Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2022

08-01-2022 | Research Article-Computer Engineering and Computer Science

An Improved and Robust Encoder–Decoder for Skin Lesion Segmentation

Authors: Bellal Hafhouf, Athmane Zitouni, Ahmed Chaouki Megherbi, Salim Sbaa

Published in: Arabian Journal for Science and Engineering | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automatic segmentation of skin lesions is an important step in computer-aided diagnosis systems for melanoma detection. Although numerous methods have been proposed in the literature, this task is still a challenging issue due to the similarity between different lesions and complex visual characteristics that may be presented in the images. In this paper, we propose major modifications to the state-of-the-art U-Net structure to further improve its capability in skin lesion segmentation. These modifications are presented in both the encoding and the decoding paths. Instead of using only standard convolutional layers like U-Net, the proposed encoding path consists of 10 standard convolutional layers, which are inspired from the Visual Geometry Group (VGG16) network, followed by a pyramid pooling module and a dilated convolutional block. This combination enables to learn better representative feature maps and preserve more spatial resolution. Furthermore, dilated residual blocks are introduced in the decoding path to further refine the segmentation maps. The experimental results on three datasets including the IEEE International Symposium on Biomedical Imaging (ISBI) 2017, ISBI 2016, and PH2 showed that our proposed method has better performance than the basic U-Net, FCN, SegNet, and U-Net + + , and achieved the performance of state-of-the-art segmentation techniques, with minimum pre- and post-processing operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barata, C.; Celebi, M.E.; Marques, J.S.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. 23(3), 1096–1109 (2019)CrossRef Barata, C.; Celebi, M.E.; Marques, J.S.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. 23(3), 1096–1109 (2019)CrossRef
2.
go back to reference Celebi, M.E.; Codella, N.; Halpern, A.: Dermoscopy image analysis: overview and future directions. IEEE J. Biomed. Health Inform. 23, 474–478 (2019)CrossRef Celebi, M.E.; Codella, N.; Halpern, A.: Dermoscopy image analysis: overview and future directions. IEEE J. Biomed. Health Inform. 23, 474–478 (2019)CrossRef
3.
go back to reference Siegel, R.L.; Miller, K.D.; Jemal, A.: Cancer statistics, 2020. CA Cancer J Clin. 70(1), 7–30 (2020)CrossRef Siegel, R.L.; Miller, K.D.; Jemal, A.: Cancer statistics, 2020. CA Cancer J Clin. 70(1), 7–30 (2020)CrossRef
4.
go back to reference Celebi, M.E.; Iyatomi, H.; Schaefer, G.; Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)CrossRef Celebi, M.E.; Iyatomi, H.; Schaefer, G.; Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)CrossRef
5.
go back to reference Yuan, Y.; Chao, M.; Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)CrossRef Yuan, Y.; Chao, M.; Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)CrossRef
6.
go back to reference Garnavi, R.; Aldeen, M.; Celebi, M.E.; Bhuiyan, A.; Dolianitis, C.; Varigos, G.: Skin lesion segmentation using color channel optimization and clustering-based histogram thresholding. Int. J. Biomed. Biol. Eng. 36, 365–373 (2009) Garnavi, R.; Aldeen, M.; Celebi, M.E.; Bhuiyan, A.; Dolianitis, C.; Varigos, G.: Skin lesion segmentation using color channel optimization and clustering-based histogram thresholding. Int. J. Biomed. Biol. Eng. 36, 365–373 (2009)
7.
go back to reference Silveira, M.; Nascimento, J.C.; Marques, J.S., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel Top. Signal Process. 3(1), 35–45 (2009)CrossRef Silveira, M.; Nascimento, J.C.; Marques, J.S., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel Top. Signal Process. 3(1), 35–45 (2009)CrossRef
8.
go back to reference Bi, L.; Kim, J.; Ahn, E., et al.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 85, 78–89 (2019)CrossRef Bi, L.; Kim, J.; Ahn, E., et al.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 85, 78–89 (2019)CrossRef
9.
go back to reference Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Anal 10, 97–129 (2015) Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Anal 10, 97–129 (2015)
10.
go back to reference Celebi, M.E.; Wen, Q.; Hwang, S.; Iyatomi, H.; Schaefer, G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), 252–258 (2013)CrossRef Celebi, M.E.; Wen, Q.; Hwang, S.; Iyatomi, H.; Schaefer, G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), 252–258 (2013)CrossRef
11.
go back to reference Suer, S.; Kockara, S.; Mete, M.: An improved border detection in dermoscopy images for density based clustering. BMC Bioinf. 12, S12 BioMed Central (2011) Suer, S.; Kockara, S.; Mete, M.: An improved border detection in dermoscopy images for density based clustering. BMC Bioinf. 12, S12 BioMed Central (2011)
12.
go back to reference Abbas, Q.; Celebi, M.E.; Fondon, G.I.; Rashid, M.: Lesion border detection in dermoscopy images using dynamic programming. Skin Res. Technol. 17(1), 91–100 (2011)CrossRef Abbas, Q.; Celebi, M.E.; Fondon, G.I.; Rashid, M.: Lesion border detection in dermoscopy images using dynamic programming. Skin Res. Technol. 17(1), 91–100 (2011)CrossRef
13.
go back to reference Celebi, M.E.; Kingravi, H.A.; Iyatomi, H., et al.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)CrossRef Celebi, M.E.; Kingravi, H.A.; Iyatomi, H., et al.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)CrossRef
14.
go back to reference Erkol, B.; Moss, R.H.; Joe, S.R.; Stoecker, W.V.; Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11(1), 17–26 (2005)CrossRef Erkol, B.; Moss, R.H.; Joe, S.R.; Stoecker, W.V.; Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11(1), 17–26 (2005)CrossRef
15.
go back to reference He, Y.; Xie, F.: Automatic skin lesion segmentation based on texture analysis and supervised learning. In:Asian Conference on Computer Vision, pp. 330–341. Springer (2012) He, Y.; Xie, F.: Automatic skin lesion segmentation based on texture analysis and supervised learning. In:Asian Conference on Computer Vision, pp. 330–341. Springer (2012)
16.
go back to reference Sadri, A.R.; Zekri, M.; Sadri, S., et al.: Segmentation of dermoscopy images using wavelet networks. IEEE Trans. Biomed. Eng. 60(4), 1134–1141 (2012)CrossRef Sadri, A.R.; Zekri, M.; Sadri, S., et al.: Segmentation of dermoscopy images using wavelet networks. IEEE Trans. Biomed. Eng. 60(4), 1134–1141 (2012)CrossRef
17.
go back to reference Al-Masni, M.A.; Al-Antari, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Progr. Biomed. 162, 221–231 (2018)CrossRef Al-Masni, M.A.; Al-Antari, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Progr. Biomed. 162, 221–231 (2018)CrossRef
18.
go back to reference Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K. Q.: Densely Connected Convolutional Networks.In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2016) Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K. Q.: Densely Connected Convolutional Networks.In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2016)
19.
go back to reference Litjens, G.; Kooi, T.; Bejnordi, B.E., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G.; Kooi, T.; Bejnordi, B.E., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
20.
go back to reference Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
21.
go back to reference Noh, H.; Hong, S.; Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE Computer Society, pp. 1520–1528 (2015) Noh, H.; Hong, S.; Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE Computer Society, pp. 1520–1528 (2015)
22.
go back to reference Badrinarayanan, V.; Kendall, A.; Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef Badrinarayanan, V.; Kendall, A.; Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef
23.
go back to reference Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: 4th Deep Learning in Medical Image Analysis (DLMIA) and 8th Multimodal Learning for Clinical Decision Support (ML-CDS), pp. 3–11. Springer, Canada (2018) Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: 4th Deep Learning in Medical Image Analysis (DLMIA) and 8th Multimodal Learning for Clinical Decision Support (ML-CDS), pp. 3–11. Springer, Canada (2018)
24.
go back to reference Ronneberger, O.; Fischer, P.; Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241. Springer, Berlin (2015) Ronneberger, O.; Fischer, P.; Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241. Springer, Berlin (2015)
25.
go back to reference Yu, F.; Koltun V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2016) Yu, F.; Koltun V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2016)
26.
go back to reference Zhao, H.;Shi, J.; Qi, X.; Wang, X.; Jia, J.: Pyramid scene parsing network. In: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017) Zhao, H.;Shi, J.; Qi, X.; Wang, X.; Jia, J.: Pyramid scene parsing network. In: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)
27.
go back to reference Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRef Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRef
28.
go back to reference Bi, L.; Kim, J.; Ahn, E., et al.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)CrossRef Bi, L.; Kim, J.; Ahn, E., et al.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)CrossRef
29.
go back to reference Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017) Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017)
30.
go back to reference Tang, P.; Liang, Q.; Yan, X., et al.: Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Comput. Methods Programs Biomed. 178, 289–301 (2019)CrossRef Tang, P.; Liang, Q.; Yan, X., et al.: Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Comput. Methods Programs Biomed. 178, 289–301 (2019)CrossRef
31.
go back to reference Hasan, M.K.; Dahal, L.; Samarakoon, P.N., et al.: DSNet: automatic dermoscopic skin lesion segmentation. Comput. Biolo Med 120, 103738 (2020)CrossRef Hasan, M.K.; Dahal, L.; Samarakoon, P.N., et al.: DSNet: automatic dermoscopic skin lesion segmentation. Comput. Biolo Med 120, 103738 (2020)CrossRef
32.
go back to reference Öztürk, Ş; Özkaya, U.: Skin lesion segmentation with improved convolutional neural network. J. Digit. Imaging 33(4), 958–970 (2020)CrossRef Öztürk, Ş; Özkaya, U.: Skin lesion segmentation with improved convolutional neural network. J. Digit. Imaging 33(4), 958–970 (2020)CrossRef
33.
go back to reference Xie, F.; Yang, J.; Liu, J., et al.: Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Progr. Biomed 186, 105241 (2020)CrossRef Xie, F.; Yang, J.; Liu, J., et al.: Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Progr. Biomed 186, 105241 (2020)CrossRef
34.
go back to reference Pour, M.P.; Seker, H.: Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Exp. Syst. Appl. 144, 113129 (2020)CrossRef Pour, M.P.; Seker, H.: Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Exp. Syst. Appl. 144, 113129 (2020)CrossRef
35.
go back to reference Zafar, K.; Gilani, S.O.; Waris, A.; Ahmed, A.; Jamil, M.; Khan, M.N.; Sohail Kashif, A.: Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20, 1601 (2020)CrossRef Zafar, K.; Gilani, S.O.; Waris, A.; Ahmed, A.; Jamil, M.; Khan, M.N.; Sohail Kashif, A.: Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20, 1601 (2020)CrossRef
36.
go back to reference Hafhouf, B.; Zitouni, A.; Megherbi, A.C.; Sbaa, S.: A Modified U-Net for Skin Lesion Segmentation. In: 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), EL OUED, Algeria, pp. 225–228, IEEE (2020) Hafhouf, B.; Zitouni, A.; Megherbi, A.C.; Sbaa, S.: A Modified U-Net for Skin Lesion Segmentation. In: 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), EL OUED, Algeria, pp. 225–228, IEEE (2020)
37.
go back to reference Jiang, Y.; Cao, S.; Tao, S.; Zhang, H.: Skin lesion segmentation based on multi-scale attention convolutional neural network. IEEE Access 8, 122811–122825 (2020)CrossRef Jiang, Y.; Cao, S.; Tao, S.; Zhang, H.: Skin lesion segmentation based on multi-scale attention convolutional neural network. IEEE Access 8, 122811–122825 (2020)CrossRef
38.
go back to reference Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
39.
go back to reference Ioffe, S.; Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) Ioffe, S.; Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
40.
go back to reference Wang, P.; Chen, P.; Yuan, Y., et al.: Understanding convolution for semantic segmentation. arXiv preprint arXiv:1702.08502 (2017) Wang, P.; Chen, P.; Yuan, Y., et al.: Understanding convolution for semantic segmentation. arXiv preprint arXiv:1702.08502 (2017)
41.
go back to reference Yu, F.; Koltun V.; Funkhouser, T.: Dilated residual networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–644 (2017) Yu, F.; Koltun V.; Funkhouser, T.: Dilated residual networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–644 (2017)
42.
go back to reference Dolz, J.; Xu, X.; Rony, J., et al.: Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 45(12), 5482–5493 (2018)CrossRef Dolz, J.; Xu, X.; Rony, J., et al.: Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 45(12), 5482–5493 (2018)CrossRef
43.
go back to reference Wang, Z.; Ji, S.: Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2486–2495 (2018) Wang, Z.; Ji, S.: Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2486–2495 (2018)
44.
go back to reference He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770- 778 (2016) He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770- 778 (2016)
45.
go back to reference Gutman, D.; Codella, N.C.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397(2016) Gutman, D.; Codella, N.C.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397(2016)
46.
go back to reference Codella, N.C.; Gutman, D.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 IEEE (2018) Codella, N.C.; Gutman, D.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 IEEE (2018)
47.
go back to reference Mendonga, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440 IEEE (2013) Mendonga, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440 IEEE (2013)
48.
go back to reference Kingma, D.P.; Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Kingma, D.P.; Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
49.
go back to reference Russakovsky, O.; Deng, J.; Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)MathSciNetCrossRef Russakovsky, O.; Deng, J.; Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)MathSciNetCrossRef
50.
go back to reference He, K.; Zhang, X.; Ren, S.; Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classi- fication. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015) He, K.; Zhang, X.; Ren, S.; Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classi- fication. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Metadata
Title
An Improved and Robust Encoder–Decoder for Skin Lesion Segmentation
Authors
Bellal Hafhouf
Athmane Zitouni
Ahmed Chaouki Megherbi
Salim Sbaa
Publication date
08-01-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06403-y

Other articles of this Issue 8/2022

Arabian Journal for Science and Engineering 8/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

Arabic Handwritten Recognition Using Deep Learning: A Survey

Research Article-Computer Engineering and Computer Science

Learning Deep Pyramid-based Representations for Pansharpening

Research Article-Computer Engineering and Computer Science

Optimization of Product Switching Processes in Assembly Lines

Premium Partners