Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2022

17-03-2022 | Research Article-Computer Engineering and Computer Science

Learning Deep Pyramid-based Representations for Pansharpening

Authors: Hannan Adeel, Syed Sohaib Ali, Muhammad Mohsin Riaz, Syed Abdul Mannan Kirmani, Muhammad Imran Qureshi, Junaid Imtiaz

Published in: Arabian Journal for Science and Engineering | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning-based pansharpening has emerged as a dynamic research area. Retaining spatial & spectral characteristics of panchromatic image and multispectral bands are a critical issue in pansharpening. This paper proposes a pyramid-based deep fusion framework that preserves spectral and spatial characteristics at different scales. The spectral information is preserved by passing the corresponding low-resolution multispectral image as residual component of the network at each scale. The spatial information is preserved by training the network at each scale with the high frequencies of panchromatic image alongside the corresponding low resolution multispectral image. The parameters of different networks are shared across the pyramid in order to add spatial details consistently across scales. The parameters are also shared across fusion layers within a network at a specific scale. Experiments show that the proposed architecture exhibits better performance than state-of-the-art pansharpening models. At reduced scale, the proposed scheme has enhanced the fusion quality in terms of universal quality index, spectral angle mapper, relative global error, and spatial correlation coefficient by \(9.6\%\), \(33.1\%\), \(36\%\), and \(11.2\%\), respectively. Similarly, at full scale, the fusion performance is improved in terms of spectral & spatial distortions, and no reference quality metrics by \(47.3\%\), \(36.7\%\), and \(9.5\%\), respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Loncan, L.; De Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)CrossRef Loncan, L.; De Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)CrossRef
2.
go back to reference Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A.: A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote. Sens. 171, 101–117 (2021)CrossRef Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A.: A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote. Sens. 171, 101–117 (2021)CrossRef
3.
go back to reference Pan, Y.; Li, X.; Gao, A.; Li, L.; Mei, S.; Yue, S.: A new pansharpening method with multi-scale structure perception. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8046–8049 (2018). IEEE Pan, Y.; Li, X.; Gao, A.; Li, L.; Mei, S.; Yue, S.: A new pansharpening method with multi-scale structure perception. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8046–8049 (2018). IEEE
4.
go back to reference Jian, L.; Yang, X.; Wu, W.; Ahmad, A.; Sangaiah, A.K.; Jeon, G.: Pansharpening using a guided image filter based on dual-scale detail extraction. J. Ambient. Intell. Humaniz. Comput. 24, 1–15 (2018) Jian, L.; Yang, X.; Wu, W.; Ahmad, A.; Sangaiah, A.K.; Jeon, G.: Pansharpening using a guided image filter based on dual-scale detail extraction. J. Ambient. Intell. Humaniz. Comput. 24, 1–15 (2018)
5.
go back to reference Liu, J.; Liang, S.: Pan-sharpening using a guided filter. Int. J. Remote Sens. 37(8), 1777–1800 (2016)CrossRef Liu, J.; Liang, S.: Pan-sharpening using a guided filter. Int. J. Remote Sens. 37(8), 1777–1800 (2016)CrossRef
6.
go back to reference Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Al-Haddad, S.; Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017) Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Al-Haddad, S.; Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017)
7.
go back to reference Kang, X.; Duan, P.; Li, S.: Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fus. 57, 130–143 (2020)CrossRef Kang, X.; Duan, P.; Li, S.: Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fus. 57, 130–143 (2020)CrossRef
8.
go back to reference Gastal, E.S.; Oliveira, M.M.: Domain transform for edge-aware image and video processing. In: ACM SIGGRAPH 2011 Papers, pp. 1–12 (2011) Gastal, E.S.; Oliveira, M.M.: Domain transform for edge-aware image and video processing. In: ACM SIGGRAPH 2011 Papers, pp. 1–12 (2011)
9.
go back to reference Ghahremani, M.; Ghassemian, H.: Nonlinear ihs: a promising method for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 13(11), 1606–1610 (2016)CrossRef Ghahremani, M.; Ghassemian, H.: Nonlinear ihs: a promising method for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 13(11), 1606–1610 (2016)CrossRef
10.
go back to reference Li, W.; Ying, L.; Qiujun, H.; Liping, Z.: Model-based variational pansharpening method with fast generalized intensity-hue-saturation. J. Appl. Remote Sens. 13(3), 2804 (2019)CrossRef Li, W.; Ying, L.; Qiujun, H.; Liping, Z.: Model-based variational pansharpening method with fast generalized intensity-hue-saturation. J. Appl. Remote Sens. 13(3), 2804 (2019)CrossRef
11.
go back to reference Rahimzadeganasl, A.; Alganci, U.; Goksel, C.: An approach for the pan sharpening of very high resolution satellite images using a cielab color based component substitution algorithm. Appl. Sci. 9(23), 5234 (2019)CrossRef Rahimzadeganasl, A.; Alganci, U.; Goksel, C.: An approach for the pan sharpening of very high resolution satellite images using a cielab color based component substitution algorithm. Appl. Sci. 9(23), 5234 (2019)CrossRef
12.
go back to reference Li, X.; Chen, H.; Zhou, J.; Wang, Y.: Improving component substitution pan-sharpening through refinement of the injection detail. Photogram. Eng. Remote Sens. 86(5), 317–325 (2020)CrossRef Li, X.; Chen, H.; Zhou, J.; Wang, Y.: Improving component substitution pan-sharpening through refinement of the injection detail. Photogram. Eng. Remote Sens. 86(5), 317–325 (2020)CrossRef
13.
go back to reference Vivone, G.: Robust band-dependent spatial-detail approaches for panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 57(9), 6421–6433 (2019)CrossRef Vivone, G.: Robust band-dependent spatial-detail approaches for panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 57(9), 6421–6433 (2019)CrossRef
14.
go back to reference Vivone, G.; Marano, S.; Chanussot, J.: Pansharpening: context-based generalized laplacian pyramids by robust regression. IEEE Trans. Geosci. Remote Sens. 58(9), 6152–6167 (2020)CrossRef Vivone, G.; Marano, S.; Chanussot, J.: Pansharpening: context-based generalized laplacian pyramids by robust regression. IEEE Trans. Geosci. Remote Sens. 58(9), 6152–6167 (2020)CrossRef
15.
go back to reference Wady, S.; Bentoutou, Y.; Bengermikh, A.; Bounoua, A.; Taleb, N.: A new ihs and wavelet based pansharpening algorithm for high spatial resolution satellite imagery. Adv. Space Res. 66(7), 1507–1521 (2020)CrossRef Wady, S.; Bentoutou, Y.; Bengermikh, A.; Bounoua, A.; Taleb, N.: A new ihs and wavelet based pansharpening algorithm for high spatial resolution satellite imagery. Adv. Space Res. 66(7), 1507–1521 (2020)CrossRef
16.
go back to reference Lu, X.; Zhang, J.; Zhang, Y.: An improved non-subsampled contourlet transform-based hybrid pan-sharpening algorithm. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3393–3396 (2017). IEEE Lu, X.; Zhang, J.; Zhang, Y.: An improved non-subsampled contourlet transform-based hybrid pan-sharpening algorithm. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3393–3396 (2017). IEEE
17.
go back to reference Jiao, J.; Wu, L.: Pansharpening with a gradient domain gif based on nsst. Electronics 8(2), 229 (2019)CrossRef Jiao, J.; Wu, L.: Pansharpening with a gradient domain gif based on nsst. Electronics 8(2), 229 (2019)CrossRef
18.
go back to reference Hallabia, H.; Hamida, A.B.: A pan-sharpening method based latent low-rank decomposition model. In: 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), pp. 1–4. IEEE Hallabia, H.; Hamida, A.B.: A pan-sharpening method based latent low-rank decomposition model. In: 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), pp. 1–4. IEEE
19.
go back to reference Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J.: Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 25(6), 2882–2895 (2016)MathSciNetCrossRef Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J.: Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 25(6), 2882–2895 (2016)MathSciNetCrossRef
20.
go back to reference Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R.: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fus. 46, 102–113 (2019)CrossRef Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R.: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fus. 46, 102–113 (2019)CrossRef
21.
go back to reference Kumar, U.: Pan-sharpening using spatial-frequency method. In: Satellite Information Classification and Interpretation. IntechOpen, ??? (2019) Kumar, U.: Pan-sharpening using spatial-frequency method. In: Satellite Information Classification and Interpretation. IntechOpen, ??? (2019)
22.
go back to reference Li, H.; Jing, L.: Image fusion framework considering mixed pixels and its application to pansharpening methods based on multiresolution analysis. J. Appl. Remote Sens. 14(3), 038501 (2020) Li, H.; Jing, L.: Image fusion framework considering mixed pixels and its application to pansharpening methods based on multiresolution analysis. J. Appl. Remote Sens. 14(3), 038501 (2020)
23.
go back to reference Chen, Y.; Wang, T.; Fang, F.; Zhang, G.: A pan-sharpening method based on the admm algorithm. Front. Earth Sci. 13(3), 656–667 (2019)CrossRef Chen, Y.; Wang, T.; Fang, F.; Zhang, G.: A pan-sharpening method based on the admm algorithm. Front. Earth Sci. 13(3), 656–667 (2019)CrossRef
24.
go back to reference Khateri, M.; Ghassemian, H.; Mirzapour, F.: A model-based method for pan-sharpening of multi-spectral images using sparse representation. In: 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 219–224 (2019). IEEE Khateri, M.; Ghassemian, H.; Mirzapour, F.: A model-based method for pan-sharpening of multi-spectral images using sparse representation. In: 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 219–224 (2019). IEEE
25.
go back to reference Wang, W.; Liu, H.; Liang, L.; Liu, Q.; Xie, G.: A regularised model-based pan-sharpening method for remote sensing images with local dissimilarities. Int. J. Remote Sens. 40(8), 3029–3054 (2019)CrossRef Wang, W.; Liu, H.; Liang, L.; Liu, Q.; Xie, G.: A regularised model-based pan-sharpening method for remote sensing images with local dissimilarities. Int. J. Remote Sens. 40(8), 3029–3054 (2019)CrossRef
26.
go back to reference Yang, J.; Yin, W.; Zhang, Y.; Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imag. Sci. 2(2), 569–592 (2009)MathSciNetCrossRef Yang, J.; Yin, W.; Zhang, Y.; Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imag. Sci. 2(2), 569–592 (2009)MathSciNetCrossRef
27.
go back to reference Khateri, M.; Shabanzade, F.; Mirzapour, F.: Regularised ihs-based pan-sharpening approach using spectral consistency constraint and total variation. IET Image Proc. 14(1), 94–104 (2019)CrossRef Khateri, M.; Shabanzade, F.; Mirzapour, F.: Regularised ihs-based pan-sharpening approach using spectral consistency constraint and total variation. IET Image Proc. 14(1), 94–104 (2019)CrossRef
28.
go back to reference Tian, X.; Chen, Y.; Yang, C.; Gao, X.; Ma, J.: A variational pansharpening method based on gradient sparse representation. IEEE Signal Process. Lett. 27, 1180–1184 (2020)CrossRef Tian, X.; Chen, Y.; Yang, C.; Gao, X.; Ma, J.: A variational pansharpening method based on gradient sparse representation. IEEE Signal Process. Lett. 27, 1180–1184 (2020)CrossRef
29.
go back to reference Wang, T.; Fang, F.; Li, F.; Zhang, G.: High-quality bayesian pansharpening. IEEE Trans. Image Process. 28(1), 227–239 (2018)MathSciNetCrossRef Wang, T.; Fang, F.; Li, F.; Zhang, G.: High-quality bayesian pansharpening. IEEE Trans. Image Process. 28(1), 227–239 (2018)MathSciNetCrossRef
30.
go back to reference Yang, Y.; Wu, L.; Huang, S.; Tang, Y.; Wan, W.: Pansharpening for multiband images with adaptive spectral-intensity modulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(9), 3196–3208 (2018)CrossRef Yang, Y.; Wu, L.; Huang, S.; Tang, Y.; Wan, W.: Pansharpening for multiband images with adaptive spectral-intensity modulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(9), 3196–3208 (2018)CrossRef
31.
go back to reference Fu, X.; Lin, Z.; Huang, Y.; Ding, X.: A variational pan-sharpening with local gradient constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10265–10274 (2019) Fu, X.; Lin, Z.; Huang, Y.; Ding, X.: A variational pan-sharpening with local gradient constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10265–10274 (2019)
32.
go back to reference Guo, P.; Zhuang, P.; Guo, Y.: Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 950–962 (2020)CrossRef Guo, P.; Zhuang, P.; Guo, Y.: Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 950–962 (2020)CrossRef
33.
go back to reference Jiang, J.; Sun, H.; Liu, X.; Ma, J.: Learning spatial-spectral prior for super-resolution of hyperspectral imagery. arXiv preprint arXiv:2005.08752 (2020) Jiang, J.; Sun, H.; Liu, X.; Ma, J.: Learning spatial-spectral prior for super-resolution of hyperspectral imagery. arXiv preprint arXiv:​2005.​08752 (2020)
34.
go back to reference Azarang, A.; Manoochehri, H.E.; Kehtarnavaz, N.: Convolutional autoencoder-based multispectral image fusion. IEEE Access 7, 35673–35683 (2019)CrossRef Azarang, A.; Manoochehri, H.E.; Kehtarnavaz, N.: Convolutional autoencoder-based multispectral image fusion. IEEE Access 7, 35673–35683 (2019)CrossRef
35.
go back to reference Li, Z.; Cheng, C.: A cnn-based pan-sharpening method for integrating panchromatic and multispectral images using landsat 8. Remote Sens. 11(22), 2606 (2019)CrossRef Li, Z.; Cheng, C.: A cnn-based pan-sharpening method for integrating panchromatic and multispectral images using landsat 8. Remote Sens. 11(22), 2606 (2019)CrossRef
36.
go back to reference Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)CrossRef Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)CrossRef
37.
go back to reference Scarpa, G.; Vitale, S.; Cozzolino, D.: Target-adaptive cnn-based pansharpening. IEEE Trans. Geosci. Remote Sens. 56(9), 5443–5457 (2018)CrossRef Scarpa, G.; Vitale, S.; Cozzolino, D.: Target-adaptive cnn-based pansharpening. IEEE Trans. Geosci. Remote Sens. 56(9), 5443–5457 (2018)CrossRef
38.
go back to reference He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
39.
go back to reference Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L.: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 14(10), 1795–1799 (2017)CrossRef Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L.: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 14(10), 1795–1799 (2017)CrossRef
40.
go back to reference Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J.: Pannet: A deep network architecture for pan-sharpening. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5449–5457 (2017) Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J.: Pannet: A deep network architecture for pan-sharpening. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5449–5457 (2017)
41.
go back to reference Liu, X.; Wang, Y.; Liu, Q.: Psgan: A generative adversarial network for remote sensing image pan-sharpening. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 873–877 (2018). IEEE Liu, X.; Wang, Y.; Liu, Q.: Psgan: A generative adversarial network for remote sensing image pan-sharpening. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 873–877 (2018). IEEE
42.
go back to reference Ma, J.; Yu, W.; Chen, C.; Liang, P.; Guo, X.; Jiang, J.: Pan-gan: An unsupervised learning method for pan-sharpening in remote sensing image fusion using a generative adversarial network. Information Fusion (2020) Ma, J.; Yu, W.; Chen, C.; Liang, P.; Guo, X.; Jiang, J.: Pan-gan: An unsupervised learning method for pan-sharpening in remote sensing image fusion using a generative adversarial network. Information Fusion (2020)
43.
go back to reference Luo, S.; Zhou, S.; Feng, Y.; Xie, J.: Pansharpening via unsupervised convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4295–4310 (2020)CrossRef Luo, S.; Zhou, S.; Feng, Y.; Xie, J.: Pansharpening via unsupervised convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4295–4310 (2020)CrossRef
44.
go back to reference A differential information residual convolutional neural network for pansharpening A differential information residual convolutional neural network for pansharpening
45.
go back to reference Qu, Y.; Baghbaderani, R.K.; Qi, H.; Kwan, C.: Unsupervised pansharpening based on self-attention mechanism. IEEE Trans. Geosci. Remote Sens. (2020) Qu, Y.; Baghbaderani, R.K.; Qi, H.; Kwan, C.: Unsupervised pansharpening based on self-attention mechanism. IEEE Trans. Geosci. Remote Sens. (2020)
46.
go back to reference Ozcelik, F.; Alganci, U.; Sertel, E.; Unal, G.: Rethinking cnn-based pansharpening: Guided colorization of panchromatic images via gans. IEEE Trans. Geosci. Remote Sens. (2020) Ozcelik, F.; Alganci, U.; Sertel, E.; Unal, G.: Rethinking cnn-based pansharpening: Guided colorization of panchromatic images via gans. IEEE Trans. Geosci. Remote Sens. (2020)
47.
go back to reference Jin, Z.-R.; Deng, L.-J.; Zhang, T.-J.; Jin, X.-X.: Bam: Bilateral activation mechanism for image fusion. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4315–4323 (2021) Jin, Z.-R.; Deng, L.-J.; Zhang, T.-J.; Jin, X.-X.: Bam: Bilateral activation mechanism for image fusion. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4315–4323 (2021)
48.
go back to reference Ma, W.; Li, Y.; Zhu, H.; Ma, H.; Jiao, L.; Shen, J.; Hou, B.: A multi-scale progressive collaborative attention network for remote sensing fusion classification. IEEE Trans. Neural Netw. Learn. Syst. (2021) Ma, W.; Li, Y.; Zhu, H.; Ma, H.; Jiao, L.; Shen, J.; Hou, B.: A multi-scale progressive collaborative attention network for remote sensing fusion classification. IEEE Trans. Neural Netw. Learn. Syst. (2021)
49.
go back to reference Jin, C.; Deng, L.-J.; Huang, T.-Z.; Vivone, G.: Laplacian pyramid networks: a new approach for multispectral pansharpening. Inf. Fus. 78, 158–170 (2022)CrossRef Jin, C.; Deng, L.-J.; Huang, T.-Z.; Vivone, G.: Laplacian pyramid networks: a new approach for multispectral pansharpening. Inf. Fus. 78, 158–170 (2022)CrossRef
50.
go back to reference Zhou, H.; Liu, Q.; Wang, Y.: Pgman: an unsupervised generative multiadversarial network for pansharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 6316–6327 (2021) Zhou, H.; Liu, Q.; Wang, Y.: Pgman: an unsupervised generative multiadversarial network for pansharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 6316–6327 (2021)
51.
go back to reference Wang, W.; Fu, X.; Zeng, W.; Sun, L.; Zhan, R.; Huang, Y.; Ding, X.: Enhanced deep blind hyperspectral image fusion. IEEE Trans. Neural Netw. Learn. Syst. (2021) Wang, W.; Fu, X.; Zeng, W.; Sun, L.; Zhan, R.; Huang, Y.; Ding, X.: Enhanced deep blind hyperspectral image fusion. IEEE Trans. Neural Netw. Learn. Syst. (2021)
52.
go back to reference Burt, P.; Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983) Burt, P.; Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
53.
go back to reference Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
55.
go back to reference Wald, L.; Ranchin, T.; Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote. Sens. 63, 691–699 (1997) Wald, L.; Ranchin, T.; Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote. Sens. 63, 691–699 (1997)
56.
go back to reference Yuhas, R.H.; Goetz, A.F.; Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm (1992) Yuhas, R.H.; Goetz, A.F.; Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm (1992)
57.
go back to reference Wald, L.: Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions. Presses des MINES, ??? (2002) Wald, L.: Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions. Presses des MINES, ??? (2002)
58.
go back to reference Wang, Z.; Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRef Wang, Z.; Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRef
59.
go back to reference Zhou, J.; Civco, D.; Silander, J.: A wavelet transform method to merge landsat tm and spot panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRef Zhou, J.; Civco, D.; Silander, J.: A wavelet transform method to merge landsat tm and spot panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRef
60.
go back to reference Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M.: Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRef Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M.: Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRef
Metadata
Title
Learning Deep Pyramid-based Representations for Pansharpening
Authors
Hannan Adeel
Syed Sohaib Ali
Muhammad Mohsin Riaz
Syed Abdul Mannan Kirmani
Muhammad Imran Qureshi
Junaid Imtiaz
Publication date
17-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-06657-0

Other articles of this Issue 8/2022

Arabian Journal for Science and Engineering 8/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

Multiple Ant Colony Algorithm Combining Community Relationship Network

Research Article-Computer Engineering and Computer Science

C-COVIDNet: A CNN Model for COVID-19 Detection Using Image Processing

Research Article-Computer Engineering and Computer Science

A Distributed Data Storage Strategy Based on LOPs

Premium Partners