Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 8/2022

17.03.2022 | Research Article-Computer Engineering and Computer Science

Learning Deep Pyramid-based Representations for Pansharpening

verfasst von: Hannan Adeel, Syed Sohaib Ali, Muhammad Mohsin Riaz, Syed Abdul Mannan Kirmani, Muhammad Imran Qureshi, Junaid Imtiaz

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning-based pansharpening has emerged as a dynamic research area. Retaining spatial & spectral characteristics of panchromatic image and multispectral bands are a critical issue in pansharpening. This paper proposes a pyramid-based deep fusion framework that preserves spectral and spatial characteristics at different scales. The spectral information is preserved by passing the corresponding low-resolution multispectral image as residual component of the network at each scale. The spatial information is preserved by training the network at each scale with the high frequencies of panchromatic image alongside the corresponding low resolution multispectral image. The parameters of different networks are shared across the pyramid in order to add spatial details consistently across scales. The parameters are also shared across fusion layers within a network at a specific scale. Experiments show that the proposed architecture exhibits better performance than state-of-the-art pansharpening models. At reduced scale, the proposed scheme has enhanced the fusion quality in terms of universal quality index, spectral angle mapper, relative global error, and spatial correlation coefficient by \(9.6\%\), \(33.1\%\), \(36\%\), and \(11.2\%\), respectively. Similarly, at full scale, the fusion performance is improved in terms of spectral & spatial distortions, and no reference quality metrics by \(47.3\%\), \(36.7\%\), and \(9.5\%\), respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Loncan, L.; De Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)CrossRef Loncan, L.; De Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)CrossRef
2.
Zurück zum Zitat Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A.: A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote. Sens. 171, 101–117 (2021)CrossRef Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A.: A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote. Sens. 171, 101–117 (2021)CrossRef
3.
Zurück zum Zitat Pan, Y.; Li, X.; Gao, A.; Li, L.; Mei, S.; Yue, S.: A new pansharpening method with multi-scale structure perception. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8046–8049 (2018). IEEE Pan, Y.; Li, X.; Gao, A.; Li, L.; Mei, S.; Yue, S.: A new pansharpening method with multi-scale structure perception. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8046–8049 (2018). IEEE
4.
Zurück zum Zitat Jian, L.; Yang, X.; Wu, W.; Ahmad, A.; Sangaiah, A.K.; Jeon, G.: Pansharpening using a guided image filter based on dual-scale detail extraction. J. Ambient. Intell. Humaniz. Comput. 24, 1–15 (2018) Jian, L.; Yang, X.; Wu, W.; Ahmad, A.; Sangaiah, A.K.; Jeon, G.: Pansharpening using a guided image filter based on dual-scale detail extraction. J. Ambient. Intell. Humaniz. Comput. 24, 1–15 (2018)
5.
Zurück zum Zitat Liu, J.; Liang, S.: Pan-sharpening using a guided filter. Int. J. Remote Sens. 37(8), 1777–1800 (2016)CrossRef Liu, J.; Liang, S.: Pan-sharpening using a guided filter. Int. J. Remote Sens. 37(8), 1777–1800 (2016)CrossRef
6.
Zurück zum Zitat Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Al-Haddad, S.; Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017) Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Al-Haddad, S.; Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017)
7.
Zurück zum Zitat Kang, X.; Duan, P.; Li, S.: Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fus. 57, 130–143 (2020)CrossRef Kang, X.; Duan, P.; Li, S.: Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fus. 57, 130–143 (2020)CrossRef
8.
Zurück zum Zitat Gastal, E.S.; Oliveira, M.M.: Domain transform for edge-aware image and video processing. In: ACM SIGGRAPH 2011 Papers, pp. 1–12 (2011) Gastal, E.S.; Oliveira, M.M.: Domain transform for edge-aware image and video processing. In: ACM SIGGRAPH 2011 Papers, pp. 1–12 (2011)
9.
Zurück zum Zitat Ghahremani, M.; Ghassemian, H.: Nonlinear ihs: a promising method for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 13(11), 1606–1610 (2016)CrossRef Ghahremani, M.; Ghassemian, H.: Nonlinear ihs: a promising method for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 13(11), 1606–1610 (2016)CrossRef
10.
Zurück zum Zitat Li, W.; Ying, L.; Qiujun, H.; Liping, Z.: Model-based variational pansharpening method with fast generalized intensity-hue-saturation. J. Appl. Remote Sens. 13(3), 2804 (2019)CrossRef Li, W.; Ying, L.; Qiujun, H.; Liping, Z.: Model-based variational pansharpening method with fast generalized intensity-hue-saturation. J. Appl. Remote Sens. 13(3), 2804 (2019)CrossRef
11.
Zurück zum Zitat Rahimzadeganasl, A.; Alganci, U.; Goksel, C.: An approach for the pan sharpening of very high resolution satellite images using a cielab color based component substitution algorithm. Appl. Sci. 9(23), 5234 (2019)CrossRef Rahimzadeganasl, A.; Alganci, U.; Goksel, C.: An approach for the pan sharpening of very high resolution satellite images using a cielab color based component substitution algorithm. Appl. Sci. 9(23), 5234 (2019)CrossRef
12.
Zurück zum Zitat Li, X.; Chen, H.; Zhou, J.; Wang, Y.: Improving component substitution pan-sharpening through refinement of the injection detail. Photogram. Eng. Remote Sens. 86(5), 317–325 (2020)CrossRef Li, X.; Chen, H.; Zhou, J.; Wang, Y.: Improving component substitution pan-sharpening through refinement of the injection detail. Photogram. Eng. Remote Sens. 86(5), 317–325 (2020)CrossRef
13.
Zurück zum Zitat Vivone, G.: Robust band-dependent spatial-detail approaches for panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 57(9), 6421–6433 (2019)CrossRef Vivone, G.: Robust band-dependent spatial-detail approaches for panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 57(9), 6421–6433 (2019)CrossRef
14.
Zurück zum Zitat Vivone, G.; Marano, S.; Chanussot, J.: Pansharpening: context-based generalized laplacian pyramids by robust regression. IEEE Trans. Geosci. Remote Sens. 58(9), 6152–6167 (2020)CrossRef Vivone, G.; Marano, S.; Chanussot, J.: Pansharpening: context-based generalized laplacian pyramids by robust regression. IEEE Trans. Geosci. Remote Sens. 58(9), 6152–6167 (2020)CrossRef
15.
Zurück zum Zitat Wady, S.; Bentoutou, Y.; Bengermikh, A.; Bounoua, A.; Taleb, N.: A new ihs and wavelet based pansharpening algorithm for high spatial resolution satellite imagery. Adv. Space Res. 66(7), 1507–1521 (2020)CrossRef Wady, S.; Bentoutou, Y.; Bengermikh, A.; Bounoua, A.; Taleb, N.: A new ihs and wavelet based pansharpening algorithm for high spatial resolution satellite imagery. Adv. Space Res. 66(7), 1507–1521 (2020)CrossRef
16.
Zurück zum Zitat Lu, X.; Zhang, J.; Zhang, Y.: An improved non-subsampled contourlet transform-based hybrid pan-sharpening algorithm. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3393–3396 (2017). IEEE Lu, X.; Zhang, J.; Zhang, Y.: An improved non-subsampled contourlet transform-based hybrid pan-sharpening algorithm. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3393–3396 (2017). IEEE
17.
Zurück zum Zitat Jiao, J.; Wu, L.: Pansharpening with a gradient domain gif based on nsst. Electronics 8(2), 229 (2019)CrossRef Jiao, J.; Wu, L.: Pansharpening with a gradient domain gif based on nsst. Electronics 8(2), 229 (2019)CrossRef
18.
Zurück zum Zitat Hallabia, H.; Hamida, A.B.: A pan-sharpening method based latent low-rank decomposition model. In: 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), pp. 1–4. IEEE Hallabia, H.; Hamida, A.B.: A pan-sharpening method based latent low-rank decomposition model. In: 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), pp. 1–4. IEEE
19.
Zurück zum Zitat Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J.: Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 25(6), 2882–2895 (2016)MathSciNetCrossRef Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J.: Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 25(6), 2882–2895 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R.: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fus. 46, 102–113 (2019)CrossRef Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R.: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fus. 46, 102–113 (2019)CrossRef
21.
Zurück zum Zitat Kumar, U.: Pan-sharpening using spatial-frequency method. In: Satellite Information Classification and Interpretation. IntechOpen, ??? (2019) Kumar, U.: Pan-sharpening using spatial-frequency method. In: Satellite Information Classification and Interpretation. IntechOpen, ??? (2019)
22.
Zurück zum Zitat Li, H.; Jing, L.: Image fusion framework considering mixed pixels and its application to pansharpening methods based on multiresolution analysis. J. Appl. Remote Sens. 14(3), 038501 (2020) Li, H.; Jing, L.: Image fusion framework considering mixed pixels and its application to pansharpening methods based on multiresolution analysis. J. Appl. Remote Sens. 14(3), 038501 (2020)
23.
Zurück zum Zitat Chen, Y.; Wang, T.; Fang, F.; Zhang, G.: A pan-sharpening method based on the admm algorithm. Front. Earth Sci. 13(3), 656–667 (2019)CrossRef Chen, Y.; Wang, T.; Fang, F.; Zhang, G.: A pan-sharpening method based on the admm algorithm. Front. Earth Sci. 13(3), 656–667 (2019)CrossRef
24.
Zurück zum Zitat Khateri, M.; Ghassemian, H.; Mirzapour, F.: A model-based method for pan-sharpening of multi-spectral images using sparse representation. In: 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 219–224 (2019). IEEE Khateri, M.; Ghassemian, H.; Mirzapour, F.: A model-based method for pan-sharpening of multi-spectral images using sparse representation. In: 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 219–224 (2019). IEEE
25.
Zurück zum Zitat Wang, W.; Liu, H.; Liang, L.; Liu, Q.; Xie, G.: A regularised model-based pan-sharpening method for remote sensing images with local dissimilarities. Int. J. Remote Sens. 40(8), 3029–3054 (2019)CrossRef Wang, W.; Liu, H.; Liang, L.; Liu, Q.; Xie, G.: A regularised model-based pan-sharpening method for remote sensing images with local dissimilarities. Int. J. Remote Sens. 40(8), 3029–3054 (2019)CrossRef
26.
Zurück zum Zitat Yang, J.; Yin, W.; Zhang, Y.; Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imag. Sci. 2(2), 569–592 (2009)MathSciNetCrossRef Yang, J.; Yin, W.; Zhang, Y.; Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imag. Sci. 2(2), 569–592 (2009)MathSciNetCrossRef
27.
Zurück zum Zitat Khateri, M.; Shabanzade, F.; Mirzapour, F.: Regularised ihs-based pan-sharpening approach using spectral consistency constraint and total variation. IET Image Proc. 14(1), 94–104 (2019)CrossRef Khateri, M.; Shabanzade, F.; Mirzapour, F.: Regularised ihs-based pan-sharpening approach using spectral consistency constraint and total variation. IET Image Proc. 14(1), 94–104 (2019)CrossRef
28.
Zurück zum Zitat Tian, X.; Chen, Y.; Yang, C.; Gao, X.; Ma, J.: A variational pansharpening method based on gradient sparse representation. IEEE Signal Process. Lett. 27, 1180–1184 (2020)CrossRef Tian, X.; Chen, Y.; Yang, C.; Gao, X.; Ma, J.: A variational pansharpening method based on gradient sparse representation. IEEE Signal Process. Lett. 27, 1180–1184 (2020)CrossRef
29.
Zurück zum Zitat Wang, T.; Fang, F.; Li, F.; Zhang, G.: High-quality bayesian pansharpening. IEEE Trans. Image Process. 28(1), 227–239 (2018)MathSciNetCrossRef Wang, T.; Fang, F.; Li, F.; Zhang, G.: High-quality bayesian pansharpening. IEEE Trans. Image Process. 28(1), 227–239 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat Yang, Y.; Wu, L.; Huang, S.; Tang, Y.; Wan, W.: Pansharpening for multiband images with adaptive spectral-intensity modulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(9), 3196–3208 (2018)CrossRef Yang, Y.; Wu, L.; Huang, S.; Tang, Y.; Wan, W.: Pansharpening for multiband images with adaptive spectral-intensity modulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(9), 3196–3208 (2018)CrossRef
31.
Zurück zum Zitat Fu, X.; Lin, Z.; Huang, Y.; Ding, X.: A variational pan-sharpening with local gradient constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10265–10274 (2019) Fu, X.; Lin, Z.; Huang, Y.; Ding, X.: A variational pan-sharpening with local gradient constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10265–10274 (2019)
32.
Zurück zum Zitat Guo, P.; Zhuang, P.; Guo, Y.: Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 950–962 (2020)CrossRef Guo, P.; Zhuang, P.; Guo, Y.: Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 950–962 (2020)CrossRef
33.
Zurück zum Zitat Jiang, J.; Sun, H.; Liu, X.; Ma, J.: Learning spatial-spectral prior for super-resolution of hyperspectral imagery. arXiv preprint arXiv:2005.08752 (2020) Jiang, J.; Sun, H.; Liu, X.; Ma, J.: Learning spatial-spectral prior for super-resolution of hyperspectral imagery. arXiv preprint arXiv:​2005.​08752 (2020)
34.
Zurück zum Zitat Azarang, A.; Manoochehri, H.E.; Kehtarnavaz, N.: Convolutional autoencoder-based multispectral image fusion. IEEE Access 7, 35673–35683 (2019)CrossRef Azarang, A.; Manoochehri, H.E.; Kehtarnavaz, N.: Convolutional autoencoder-based multispectral image fusion. IEEE Access 7, 35673–35683 (2019)CrossRef
35.
Zurück zum Zitat Li, Z.; Cheng, C.: A cnn-based pan-sharpening method for integrating panchromatic and multispectral images using landsat 8. Remote Sens. 11(22), 2606 (2019)CrossRef Li, Z.; Cheng, C.: A cnn-based pan-sharpening method for integrating panchromatic and multispectral images using landsat 8. Remote Sens. 11(22), 2606 (2019)CrossRef
36.
Zurück zum Zitat Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)CrossRef Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)CrossRef
37.
Zurück zum Zitat Scarpa, G.; Vitale, S.; Cozzolino, D.: Target-adaptive cnn-based pansharpening. IEEE Trans. Geosci. Remote Sens. 56(9), 5443–5457 (2018)CrossRef Scarpa, G.; Vitale, S.; Cozzolino, D.: Target-adaptive cnn-based pansharpening. IEEE Trans. Geosci. Remote Sens. 56(9), 5443–5457 (2018)CrossRef
38.
Zurück zum Zitat He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
39.
Zurück zum Zitat Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L.: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 14(10), 1795–1799 (2017)CrossRef Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L.: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 14(10), 1795–1799 (2017)CrossRef
40.
Zurück zum Zitat Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J.: Pannet: A deep network architecture for pan-sharpening. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5449–5457 (2017) Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J.: Pannet: A deep network architecture for pan-sharpening. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5449–5457 (2017)
41.
Zurück zum Zitat Liu, X.; Wang, Y.; Liu, Q.: Psgan: A generative adversarial network for remote sensing image pan-sharpening. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 873–877 (2018). IEEE Liu, X.; Wang, Y.; Liu, Q.: Psgan: A generative adversarial network for remote sensing image pan-sharpening. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 873–877 (2018). IEEE
42.
Zurück zum Zitat Ma, J.; Yu, W.; Chen, C.; Liang, P.; Guo, X.; Jiang, J.: Pan-gan: An unsupervised learning method for pan-sharpening in remote sensing image fusion using a generative adversarial network. Information Fusion (2020) Ma, J.; Yu, W.; Chen, C.; Liang, P.; Guo, X.; Jiang, J.: Pan-gan: An unsupervised learning method for pan-sharpening in remote sensing image fusion using a generative adversarial network. Information Fusion (2020)
43.
Zurück zum Zitat Luo, S.; Zhou, S.; Feng, Y.; Xie, J.: Pansharpening via unsupervised convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4295–4310 (2020)CrossRef Luo, S.; Zhou, S.; Feng, Y.; Xie, J.: Pansharpening via unsupervised convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4295–4310 (2020)CrossRef
44.
Zurück zum Zitat A differential information residual convolutional neural network for pansharpening A differential information residual convolutional neural network for pansharpening
45.
Zurück zum Zitat Qu, Y.; Baghbaderani, R.K.; Qi, H.; Kwan, C.: Unsupervised pansharpening based on self-attention mechanism. IEEE Trans. Geosci. Remote Sens. (2020) Qu, Y.; Baghbaderani, R.K.; Qi, H.; Kwan, C.: Unsupervised pansharpening based on self-attention mechanism. IEEE Trans. Geosci. Remote Sens. (2020)
46.
Zurück zum Zitat Ozcelik, F.; Alganci, U.; Sertel, E.; Unal, G.: Rethinking cnn-based pansharpening: Guided colorization of panchromatic images via gans. IEEE Trans. Geosci. Remote Sens. (2020) Ozcelik, F.; Alganci, U.; Sertel, E.; Unal, G.: Rethinking cnn-based pansharpening: Guided colorization of panchromatic images via gans. IEEE Trans. Geosci. Remote Sens. (2020)
47.
Zurück zum Zitat Jin, Z.-R.; Deng, L.-J.; Zhang, T.-J.; Jin, X.-X.: Bam: Bilateral activation mechanism for image fusion. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4315–4323 (2021) Jin, Z.-R.; Deng, L.-J.; Zhang, T.-J.; Jin, X.-X.: Bam: Bilateral activation mechanism for image fusion. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4315–4323 (2021)
48.
Zurück zum Zitat Ma, W.; Li, Y.; Zhu, H.; Ma, H.; Jiao, L.; Shen, J.; Hou, B.: A multi-scale progressive collaborative attention network for remote sensing fusion classification. IEEE Trans. Neural Netw. Learn. Syst. (2021) Ma, W.; Li, Y.; Zhu, H.; Ma, H.; Jiao, L.; Shen, J.; Hou, B.: A multi-scale progressive collaborative attention network for remote sensing fusion classification. IEEE Trans. Neural Netw. Learn. Syst. (2021)
49.
Zurück zum Zitat Jin, C.; Deng, L.-J.; Huang, T.-Z.; Vivone, G.: Laplacian pyramid networks: a new approach for multispectral pansharpening. Inf. Fus. 78, 158–170 (2022)CrossRef Jin, C.; Deng, L.-J.; Huang, T.-Z.; Vivone, G.: Laplacian pyramid networks: a new approach for multispectral pansharpening. Inf. Fus. 78, 158–170 (2022)CrossRef
50.
Zurück zum Zitat Zhou, H.; Liu, Q.; Wang, Y.: Pgman: an unsupervised generative multiadversarial network for pansharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 6316–6327 (2021) Zhou, H.; Liu, Q.; Wang, Y.: Pgman: an unsupervised generative multiadversarial network for pansharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 6316–6327 (2021)
51.
Zurück zum Zitat Wang, W.; Fu, X.; Zeng, W.; Sun, L.; Zhan, R.; Huang, Y.; Ding, X.: Enhanced deep blind hyperspectral image fusion. IEEE Trans. Neural Netw. Learn. Syst. (2021) Wang, W.; Fu, X.; Zeng, W.; Sun, L.; Zhan, R.; Huang, Y.; Ding, X.: Enhanced deep blind hyperspectral image fusion. IEEE Trans. Neural Netw. Learn. Syst. (2021)
52.
Zurück zum Zitat Burt, P.; Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983) Burt, P.; Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
53.
Zurück zum Zitat Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
55.
Zurück zum Zitat Wald, L.; Ranchin, T.; Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote. Sens. 63, 691–699 (1997) Wald, L.; Ranchin, T.; Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote. Sens. 63, 691–699 (1997)
56.
Zurück zum Zitat Yuhas, R.H.; Goetz, A.F.; Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm (1992) Yuhas, R.H.; Goetz, A.F.; Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm (1992)
57.
Zurück zum Zitat Wald, L.: Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions. Presses des MINES, ??? (2002) Wald, L.: Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions. Presses des MINES, ??? (2002)
58.
Zurück zum Zitat Wang, Z.; Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRef Wang, Z.; Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRef
59.
Zurück zum Zitat Zhou, J.; Civco, D.; Silander, J.: A wavelet transform method to merge landsat tm and spot panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRef Zhou, J.; Civco, D.; Silander, J.: A wavelet transform method to merge landsat tm and spot panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRef
60.
Zurück zum Zitat Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M.: Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRef Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M.: Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRef
Metadaten
Titel
Learning Deep Pyramid-based Representations for Pansharpening
verfasst von
Hannan Adeel
Syed Sohaib Ali
Muhammad Mohsin Riaz
Syed Abdul Mannan Kirmani
Muhammad Imran Qureshi
Junaid Imtiaz
Publikationsdatum
17.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 8/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-06657-0

Weitere Artikel der Ausgabe 8/2022

Arabian Journal for Science and Engineering 8/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

A Recommender System Integrating Long Short-Term Memory and Latent Factor

Research Article-Computer Engineering and Computer Science

DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder

Research Article-Computer Engineering and Computer Science

Ultrasound Penetration-Based Digital Soil Texture Analyzer

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.