Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 2/2022

19-04-2021 | Original Research

An interpolation-based method for solving Volterra integral equations

Published in: Journal of Applied Mathematics and Computing | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the second kind Volterra integral equations (VIEs) are considered. An algorithm based on the two-point Taylor formula as a special case of the Hermite interpolation is proposed to approximate the solution of such problems. The method can be applied for solving both the linear and nonlinear VIEs and systems of nonlinear VIEs. The convergence analysis and the error estimate of the method are described. A multistep form of the algorithm which is particularly beneficial in large intervals is also presented. The main advantage of the proposed algorithm is that it gives high accurate results in acceptable computational times. In order to indicate the validity of the method, it is employed for solving several illustrative examples. The efficiency of the method is confirmed through our study respecting the absolute errors and CPU times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baratella, P.: A Nyström interpolant for some weakly singular linear Volterra integral equations. J. Comput. Appl. Math. 231, 725–734 (2009)MathSciNetMATHCrossRef Baratella, P.: A Nyström interpolant for some weakly singular linear Volterra integral equations. J. Comput. Appl. Math. 231, 725–734 (2009)MathSciNetMATHCrossRef
3.
go back to reference Ding, H.J., Wang, H.M., Chen, W.Q.: Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere. Arch. Appl. Mech. 73, 49–62 (2003)MATHCrossRef Ding, H.J., Wang, H.M., Chen, W.Q.: Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere. Arch. Appl. Mech. 73, 49–62 (2003)MATHCrossRef
4.
go back to reference Farengo, R., Lee, Y.C., Guzdar, P.N.: An electromagnetic integral equation: application to microtearing modes. Phys. Fluids 26, 3515–3523 (1983)MATHCrossRef Farengo, R., Lee, Y.C., Guzdar, P.N.: An electromagnetic integral equation: application to microtearing modes. Phys. Fluids 26, 3515–3523 (1983)MATHCrossRef
5.
6.
go back to reference Rahman, M.: Integral Equations and Their Applications. WIT Press, Southampton (2007)MATH Rahman, M.: Integral Equations and Their Applications. WIT Press, Southampton (2007)MATH
7.
go back to reference Ladopoulos, E.G.: Singular Integral Equations: Linear and Non-linear Theory and Its Applications in Science and Engineering. Springer, Berlin (2013)MATH Ladopoulos, E.G.: Singular Integral Equations: Linear and Non-linear Theory and Its Applications in Science and Engineering. Springer, Berlin (2013)MATH
8.
go back to reference Serov, V.S., Schürmann, H.W., Svetogorova, E.: Integral equation approach to reflection and transmission of a plane TE-wave at a (linear/nonlinear) dielectric film with spatially varying permittivity. J. Phys. A Math. Gen. 37, 3489 (2004)MathSciNetMATHCrossRef Serov, V.S., Schürmann, H.W., Svetogorova, E.: Integral equation approach to reflection and transmission of a plane TE-wave at a (linear/nonlinear) dielectric film with spatially varying permittivity. J. Phys. A Math. Gen. 37, 3489 (2004)MathSciNetMATHCrossRef
9.
go back to reference Yousefi, S.A.: Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl. Math. Comput. 175, 574–580 (2006)MathSciNetMATH Yousefi, S.A.: Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl. Math. Comput. 175, 574–580 (2006)MathSciNetMATH
10.
go back to reference Hansen, P.C., Jensen, T.K.: Large-Scale Methods in Image Deblurring. International Workshop on Applied Parallel Computing. Springer, Berlin (2006)CrossRef Hansen, P.C., Jensen, T.K.: Large-Scale Methods in Image Deblurring. International Workshop on Applied Parallel Computing. Springer, Berlin (2006)CrossRef
11.
go back to reference Schürmann, H.W., Serov, V.S., Shestopalov, Y.V.: Reflection and transmission of a plane TE-wave at a lossless nonlinear dielectric film. Phys. D 158, 197–215 (2001)MathSciNetMATHCrossRef Schürmann, H.W., Serov, V.S., Shestopalov, Y.V.: Reflection and transmission of a plane TE-wave at a lossless nonlinear dielectric film. Phys. D 158, 197–215 (2001)MathSciNetMATHCrossRef
12.
go back to reference Hethcote, H.W., Lewis, M.A., Van Den Driessche, P.: An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64 (1989)MathSciNetMATHCrossRef Hethcote, H.W., Lewis, M.A., Van Den Driessche, P.: An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64 (1989)MathSciNetMATHCrossRef
13.
14.
go back to reference Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)MathSciNetMATHCrossRef Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)MathSciNetMATHCrossRef
15.
go back to reference Cherruault, Y., Zitoun, F.B.: A Taylor expansion approach using Faà di Bruno’s formula for solving nonlinear integral equations of the second and third kind. Kybernetes 38, 19 (2009)MATH Cherruault, Y., Zitoun, F.B.: A Taylor expansion approach using Faà di Bruno’s formula for solving nonlinear integral equations of the second and third kind. Kybernetes 38, 19 (2009)MATH
16.
go back to reference Maleknejad, K., Mollapourasl, R., Shahabi, M.: On the solution of a nonlinear integral equation on the basis of a fixed point technique and cubic B-spline scaling functions. J. Comput. Appl. Math. 239, 346–358 (2013)MathSciNetMATHCrossRef Maleknejad, K., Mollapourasl, R., Shahabi, M.: On the solution of a nonlinear integral equation on the basis of a fixed point technique and cubic B-spline scaling functions. J. Comput. Appl. Math. 239, 346–358 (2013)MathSciNetMATHCrossRef
17.
go back to reference Maleknejad, K., Najafi, E.: Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization. Commun. Nonlinear Sci. Numer. Simul. 16, 93–100 (2011)MathSciNetMATHCrossRef Maleknejad, K., Najafi, E.: Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization. Commun. Nonlinear Sci. Numer. Simul. 16, 93–100 (2011)MathSciNetMATHCrossRef
18.
go back to reference Maleknejad, K., Rashidinia, J., Jalilian, H.: Non-polynomial spline functions and Quasi-linearization to approximate nonlinear Volterra integral equation. Filomat 32, 3947–3956 (2018)MathSciNetCrossRef Maleknejad, K., Rashidinia, J., Jalilian, H.: Non-polynomial spline functions and Quasi-linearization to approximate nonlinear Volterra integral equation. Filomat 32, 3947–3956 (2018)MathSciNetCrossRef
19.
go back to reference Mirzaee, F., Hoseini, S.F.: Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations. Indagationes Mathematicae 27, 835–849 (2016)MathSciNetMATHCrossRef Mirzaee, F., Hoseini, S.F.: Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations. Indagationes Mathematicae 27, 835–849 (2016)MathSciNetMATHCrossRef
20.
go back to reference Mirzaee, F., Hadadiyan, E.: Applying the modified block-pulse functions to solve the three-dimensional Volterr-Fredholm integral equations. Appl. Math. Comput. 265, 759–767 (2015)MathSciNetMATH Mirzaee, F., Hadadiyan, E.: Applying the modified block-pulse functions to solve the three-dimensional Volterr-Fredholm integral equations. Appl. Math. Comput. 265, 759–767 (2015)MathSciNetMATH
21.
go back to reference Wazwaz, A., Rach, R., Duan, J.S.: Adomian decomposition method for solving the Volterra integral form of the Lan-Emden equations with initial values and boundary conditions. Appl. Math. Comput. 219, 5004–5019 (2013)MathSciNetMATH Wazwaz, A., Rach, R., Duan, J.S.: Adomian decomposition method for solving the Volterra integral form of the Lan-Emden equations with initial values and boundary conditions. Appl. Math. Comput. 219, 5004–5019 (2013)MathSciNetMATH
22.
go back to reference Vosughi, H., Shivanian, E., Abbasbandy, S.: A new analytical technique to solve Volterra’s integral equations. Math. Methods Appl. Sci. 34, 1243–1253 (2011)MathSciNetMATHCrossRef Vosughi, H., Shivanian, E., Abbasbandy, S.: A new analytical technique to solve Volterra’s integral equations. Math. Methods Appl. Sci. 34, 1243–1253 (2011)MathSciNetMATHCrossRef
23.
go back to reference Kant, K., Nelakanti, G.: Approximation methods for second kind weakly singular Volterra integral equations. J. Comput. Appl. Math. 368, 112531 (2020)MathSciNetMATHCrossRef Kant, K., Nelakanti, G.: Approximation methods for second kind weakly singular Volterra integral equations. J. Comput. Appl. Math. 368, 112531 (2020)MathSciNetMATHCrossRef
24.
go back to reference Assari, P., Dehghan, M.: A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Appl. Numer. Math. 143, 276–299 (2019)MathSciNetMATHCrossRef Assari, P., Dehghan, M.: A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Appl. Numer. Math. 143, 276–299 (2019)MathSciNetMATHCrossRef
25.
go back to reference Assari, P., Adibi, H., Dehghan, M.: A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J. Comput. Appl. Math. 267, 160–181 (2014)MathSciNetMATHCrossRef Assari, P., Adibi, H., Dehghan, M.: A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J. Comput. Appl. Math. 267, 160–181 (2014)MathSciNetMATHCrossRef
26.
go back to reference Shamooshaky, M.M., Assari, P., Adibi, H.: The numerical solution of nonlinear Fredholm-Hammerstein integral equations of the second kind utilizing Chebyshev wavelets. J. Math. Comput. Sci. 10, 235–246 (2014)CrossRef Shamooshaky, M.M., Assari, P., Adibi, H.: The numerical solution of nonlinear Fredholm-Hammerstein integral equations of the second kind utilizing Chebyshev wavelets. J. Math. Comput. Sci. 10, 235–246 (2014)CrossRef
27.
go back to reference Avazzadeh, Z., Heydari, M., Chen, W., Loghmani, G.B.: Smooth solution of partial integrodifferential equations using radial basis functions. J. Appl. Anal. Comput. 4, 115–127 (2014)MathSciNetMATH Avazzadeh, Z., Heydari, M., Chen, W., Loghmani, G.B.: Smooth solution of partial integrodifferential equations using radial basis functions. J. Appl. Anal. Comput. 4, 115–127 (2014)MathSciNetMATH
28.
go back to reference Assari, P., Dehghan, M.: The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Appl. Numer. Math. 131, 140–157 (2018)MathSciNetMATHCrossRef Assari, P., Dehghan, M.: The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Appl. Numer. Math. 131, 140–157 (2018)MathSciNetMATHCrossRef
29.
go back to reference Assari, P., Adibi, H., Dehghan, M.: The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl. Numer. Math. 81, 76–93 (2014)MathSciNetMATHCrossRef Assari, P., Adibi, H., Dehghan, M.: The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl. Numer. Math. 81, 76–93 (2014)MathSciNetMATHCrossRef
30.
go back to reference Assari, P., Adibi, H., Dehghan, M.: A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math. 239, 72–92 (2013)MathSciNetMATHCrossRef Assari, P., Adibi, H., Dehghan, M.: A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math. 239, 72–92 (2013)MathSciNetMATHCrossRef
31.
go back to reference Assari, P., Adibi, H., Dehghan, M.: A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl. Math. Model. 37, 9269–9294 (2013)MathSciNetMATHCrossRef Assari, P., Adibi, H., Dehghan, M.: A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl. Math. Model. 37, 9269–9294 (2013)MathSciNetMATHCrossRef
32.
go back to reference Mirzaee, F., Bimesl, S.: An efficient numerical approach for solving systems of high-order linear Volterra integral equations. Sci. Iran. 21, 2250–2263 (2014)MATH Mirzaee, F., Bimesl, S.: An efficient numerical approach for solving systems of high-order linear Volterra integral equations. Sci. Iran. 21, 2250–2263 (2014)MATH
33.
go back to reference Mirzaee, F., Hoseini, S.F.: Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 273, 637–644 (2016)MathSciNetMATH Mirzaee, F., Hoseini, S.F.: Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 273, 637–644 (2016)MathSciNetMATH
34.
go back to reference Mirzaee, F., Bimesl, S.: A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients. J. Egypt. Math. Soc. 22, 238–248 (2014)MathSciNetMATHCrossRef Mirzaee, F., Bimesl, S.: A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients. J. Egypt. Math. Soc. 22, 238–248 (2014)MathSciNetMATHCrossRef
35.
go back to reference Mirzaee, F., Hadadiyan, E.: A new numerical method for solving two-dimensional Volterra-Fredholm integral equations. J. Appl. Math. Comput. 52, 489–513 (2016)MathSciNetMATHCrossRef Mirzaee, F., Hadadiyan, E.: A new numerical method for solving two-dimensional Volterra-Fredholm integral equations. J. Appl. Math. Comput. 52, 489–513 (2016)MathSciNetMATHCrossRef
36.
go back to reference Ahmadinia, M., Afshari, H.A., Heydari, M.: Numerical solution of Itô-Volterra integral equation by least squares method. Numer. Algorithms 84, 591–602 (2020)MathSciNetMATHCrossRef Ahmadinia, M., Afshari, H.A., Heydari, M.: Numerical solution of Itô-Volterra integral equation by least squares method. Numer. Algorithms 84, 591–602 (2020)MathSciNetMATHCrossRef
37.
go back to reference Assari, P., Adibi, H., Dehghan, M.: A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algorithms 67, 423–455 (2014)MathSciNetMATHCrossRef Assari, P., Adibi, H., Dehghan, M.: A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algorithms 67, 423–455 (2014)MathSciNetMATHCrossRef
38.
go back to reference Saberirad, F., Karbassi, S.M., Heydari, M.: Numerical solution of nonlinear fuzzy Volterra integral equations of the second kind for changing sign kernels. Soft. Comput. 23, 11181–11197 (2019)MATHCrossRef Saberirad, F., Karbassi, S.M., Heydari, M.: Numerical solution of nonlinear fuzzy Volterra integral equations of the second kind for changing sign kernels. Soft. Comput. 23, 11181–11197 (2019)MATHCrossRef
39.
go back to reference De Hoog, F., Weiss, R.: Implicit Runge-Kutta methods for second kind Volterra integral equations. Numer. Math. 23, 199–213 (1974)MathSciNetMATHCrossRef De Hoog, F., Weiss, R.: Implicit Runge-Kutta methods for second kind Volterra integral equations. Numer. Math. 23, 199–213 (1974)MathSciNetMATHCrossRef
40.
go back to reference Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetMATH Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetMATH
41.
go back to reference Saffarzadeh, M., Loghmani, G.B., Heydari, M.: An iterative technique for the numerical solution of nonlinear stochastic Itô-Volterra integral equations. J. Comput. Appl. Math. 333, 74–86 (2018)MathSciNetMATHCrossRef Saffarzadeh, M., Loghmani, G.B., Heydari, M.: An iterative technique for the numerical solution of nonlinear stochastic Itô-Volterra integral equations. J. Comput. Appl. Math. 333, 74–86 (2018)MathSciNetMATHCrossRef
42.
go back to reference Saffarzadeh, M., Heydari, M., Loghmani, G.B.: Convergence analysis of an iterative numerical algorithm for solving nonlinear stochastic Itô-Volterra integral equations with m-dimensional Brownian motion. Appl. Numer. Math. 146, 182–198 (2019)MathSciNetMATHCrossRef Saffarzadeh, M., Heydari, M., Loghmani, G.B.: Convergence analysis of an iterative numerical algorithm for solving nonlinear stochastic Itô-Volterra integral equations with m-dimensional Brownian motion. Appl. Numer. Math. 146, 182–198 (2019)MathSciNetMATHCrossRef
43.
go back to reference Saffarzadeh, M., Heydari, M., Loghmani, G.B.: Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô-Volterra integral equations. Math. Methods Appl. Sci. 43, 5212–5233 (2020)MathSciNetMATHCrossRef Saffarzadeh, M., Heydari, M., Loghmani, G.B.: Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô-Volterra integral equations. Math. Methods Appl. Sci. 43, 5212–5233 (2020)MathSciNetMATHCrossRef
44.
go back to reference Eshkuvatov, K., Hameed, H.H., Taib, B.M., Nik Longcd, N.M.A.: General 2\(\times \)2 system of nonlinear integral equations and its approximate solution. J. Comput. Appl. Math. 361, 528–546 (2019) Eshkuvatov, K., Hameed, H.H., Taib, B.M., Nik Longcd, N.M.A.: General 2\(\times \)2 system of nonlinear integral equations and its approximate solution. J. Comput. Appl. Math. 361, 528–546 (2019)
45.
go back to reference Babolian, E., Mordad, M.: A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions. Comput. Math. Appl. 62, 187–198 (2011)MathSciNetMATHCrossRef Babolian, E., Mordad, M.: A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions. Comput. Math. Appl. 62, 187–198 (2011)MathSciNetMATHCrossRef
46.
go back to reference Mirzaee, F., Hadadiyan, E.: Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)MathSciNetMATH Mirzaee, F., Hadadiyan, E.: Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)MathSciNetMATH
47.
go back to reference Mirzaee, F., Hadadiyan, E.: Numerical solution of optimal control problem of the non-linear Volterra integral equations via generalized hat functions. IMA J. Math. Control Inform. 34, 889–904 (2017)MathSciNetMATH Mirzaee, F., Hadadiyan, E.: Numerical solution of optimal control problem of the non-linear Volterra integral equations via generalized hat functions. IMA J. Math. Control Inform. 34, 889–904 (2017)MathSciNetMATH
48.
go back to reference Mirzaee, F., Hadadiyan, E.: Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Math. Methods Appl. Sci. 40, 3433–3444 (2017)MathSciNetMATHCrossRef Mirzaee, F., Hadadiyan, E.: Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Math. Methods Appl. Sci. 40, 3433–3444 (2017)MathSciNetMATHCrossRef
49.
go back to reference Mirzaee, F., Hadadiyan, E.: Application of two-dimensional hat functions for solving space-time integral equations. J. Appl. Math. Comput. 51, 453–486 (2016)MathSciNetMATHCrossRef Mirzaee, F., Hadadiyan, E.: Application of two-dimensional hat functions for solving space-time integral equations. J. Appl. Math. Comput. 51, 453–486 (2016)MathSciNetMATHCrossRef
50.
go back to reference Heydari, M., Avazzadeh, Z., Loghmani, G.B.: Chebyshev cardinal functions for solving Volterra-Fredholm integrodifferential equations using operational matrices. Iran. J. Sci. Technol. (Sci.) 36, 13–24 (2012)MathSciNet Heydari, M., Avazzadeh, Z., Loghmani, G.B.: Chebyshev cardinal functions for solving Volterra-Fredholm integrodifferential equations using operational matrices. Iran. J. Sci. Technol. (Sci.) 36, 13–24 (2012)MathSciNet
51.
go back to reference Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications, vol. 30. Cambridge University Press, Cambridge (2017)MATHCrossRef Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications, vol. 30. Cambridge University Press, Cambridge (2017)MATHCrossRef
52.
go back to reference Günerhan, H., Khodadad, F.S., Rezazadeh, H., Khater, M.M.: Exact optical solutions of the\( (2+1)\) dimensions Kundu-Mukherjee-Naskar model via the new extended direct algebraic method. Mod. Phys. Lett. B 2050225, 2050225 (2020)MathSciNetCrossRef Günerhan, H., Khodadad, F.S., Rezazadeh, H., Khater, M.M.: Exact optical solutions of the\( (2+1)\) dimensions Kundu-Mukherjee-Naskar model via the new extended direct algebraic method. Mod. Phys. Lett. B 2050225, 2050225 (2020)MathSciNetCrossRef
53.
go back to reference Attia, R.A., Lu, D., Ak, T., Khater, M.M.: Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method. Mod. Phys. Lett. B 34, 2050044 (2020)CrossRef Attia, R.A., Lu, D., Ak, T., Khater, M.M.: Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method. Mod. Phys. Lett. B 34, 2050044 (2020)CrossRef
54.
go back to reference Ali, A.T., Khater, M.M., Attia, R.A., Abdel-aty, A.H., Lu, D.: Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos Solitons Fract. 131, 109473 (2020)MathSciNetCrossRef Ali, A.T., Khater, M.M., Attia, R.A., Abdel-aty, A.H., Lu, D.: Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos Solitons Fract. 131, 109473 (2020)MathSciNetCrossRef
55.
go back to reference Khater, M.M., Attia, R.A., Abdel-Aty, A.H., Abdou, M.A., Eleuch, H., Lu, D.: Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Res. Phys. 16, 103000 (2020) Khater, M.M., Attia, R.A., Abdel-Aty, A.H., Abdou, M.A., Eleuch, H., Lu, D.: Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Res. Phys. 16, 103000 (2020)
56.
go back to reference Park, C., Khater, M.M., Attia, R.A., Alharbi, W., Alodhaibi, S.S.: An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator. Alexandr. Eng. J. 59, 1205–1214 (2020)CrossRef Park, C., Khater, M.M., Attia, R.A., Alharbi, W., Alodhaibi, S.S.: An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator. Alexandr. Eng. J. 59, 1205–1214 (2020)CrossRef
57.
go back to reference Park, C., Khater, M.M., Abdel-Aty, A.H., Attia, R.A., Lu, D.: On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering. Alexandr. Eng. J. 59, 1099–1105 (2020)CrossRef Park, C., Khater, M.M., Abdel-Aty, A.H., Attia, R.A., Lu, D.: On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering. Alexandr. Eng. J. 59, 1099–1105 (2020)CrossRef
59.
go back to reference Costabile, F.A., Napoli, A.: Solving BVPs using two-point Taylor formula by a symbolic software. J. Comput. Appl. Math. 210, 136–148 (2007)MathSciNetMATHCrossRef Costabile, F.A., Napoli, A.: Solving BVPs using two-point Taylor formula by a symbolic software. J. Comput. Appl. Math. 210, 136–148 (2007)MathSciNetMATHCrossRef
60.
go back to reference Costabile, F.A., Napoli, A.: Collocation for high order differential equations with two-points Hermite boundary conditions. Appl. Numer. Math. 87, 157–167 (2015)MathSciNetMATHCrossRef Costabile, F.A., Napoli, A.: Collocation for high order differential equations with two-points Hermite boundary conditions. Appl. Numer. Math. 87, 157–167 (2015)MathSciNetMATHCrossRef
61.
62.
go back to reference Sugiyama, S.: Stability problems on difference and functional-differential equations. Proc. Jpn. Acad. 45, 526–529 (1969)MathSciNetMATH Sugiyama, S.: Stability problems on difference and functional-differential equations. Proc. Jpn. Acad. 45, 526–529 (1969)MathSciNetMATH
63.
go back to reference Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2013)MATH Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2013)MATH
64.
go back to reference Fazeli, S., Somayyeh, G., Hojjati, S.: Shahmorad: Super implicit multistep collocation methods for nonlinear Volterra integral equations. Math. Comput. Model. 55, 590–607 (2012)MATHCrossRef Fazeli, S., Somayyeh, G., Hojjati, S.: Shahmorad: Super implicit multistep collocation methods for nonlinear Volterra integral equations. Math. Comput. Model. 55, 590–607 (2012)MATHCrossRef
65.
go back to reference Erfanian, M.: The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane. Int. J. Appl. Comput. Math. 4, 31 (2018)MathSciNetMATHCrossRef Erfanian, M.: The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane. Int. J. Appl. Comput. Math. 4, 31 (2018)MathSciNetMATHCrossRef
66.
go back to reference Saberi-Nadjafi, J., Mehrabinezhad, M., Diogo, T.: The Coiflet-Galerkin method for linear Volterra integral equations. Appl. Math. Comput. 221, 469–483 (2013)MathSciNetMATH Saberi-Nadjafi, J., Mehrabinezhad, M., Diogo, T.: The Coiflet-Galerkin method for linear Volterra integral equations. Appl. Math. Comput. 221, 469–483 (2013)MathSciNetMATH
67.
go back to reference Berenguer, M.I., et al.: Biorthogonal systems for solving Volterra integral equation systems of the second kind. J. Comput. Appl. Math. 235, 1875–1883 (2011)MathSciNetMATHCrossRef Berenguer, M.I., et al.: Biorthogonal systems for solving Volterra integral equation systems of the second kind. J. Comput. Appl. Math. 235, 1875–1883 (2011)MathSciNetMATHCrossRef
68.
go back to reference Katani, R., Shahmorad, S.: Block by block method for the systems of nonlinear Volterra integral equations. Appl. Math. Model. 34, 400–406 (2010)MathSciNetMATHCrossRef Katani, R., Shahmorad, S.: Block by block method for the systems of nonlinear Volterra integral equations. Appl. Math. Model. 34, 400–406 (2010)MathSciNetMATHCrossRef
69.
go back to reference Sekar, Chandra Guru, R., Murugesan, K. : STWS approach for Hammerstein system of nonlinear Volterra integral equations of the second kind. Int. J. Comput. Math. 94, 1867–1878 (2017) Sekar, Chandra Guru, R., Murugesan, K. : STWS approach for Hammerstein system of nonlinear Volterra integral equations of the second kind. Int. J. Comput. Math. 94, 1867–1878 (2017)
70.
go back to reference Abdi, A., Hojjati, G., Jackiewicz, Z., Mahdi, H.: A new code for Volterra integral equations based on natural Runge-Kutta methods. Appl. Numer. Math. 143, 35–50 (2019)MathSciNetMATHCrossRef Abdi, A., Hojjati, G., Jackiewicz, Z., Mahdi, H.: A new code for Volterra integral equations based on natural Runge-Kutta methods. Appl. Numer. Math. 143, 35–50 (2019)MathSciNetMATHCrossRef
71.
go back to reference Abdi, A., Hosseini, S.A., Podhaisky, H.: Numerical methods based on the Floater-Hormann interpolants for stiff VIEs. Numer. Algorithms 85, 867–886 (2019)MathSciNetMATHCrossRef Abdi, A., Hosseini, S.A., Podhaisky, H.: Numerical methods based on the Floater-Hormann interpolants for stiff VIEs. Numer. Algorithms 85, 867–886 (2019)MathSciNetMATHCrossRef
72.
go back to reference Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)MathSciNetMATHCrossRef Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)MathSciNetMATHCrossRef
73.
go back to reference Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge-Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT Numer. Math. 47, 259–275 (2007)MathSciNetMATHCrossRef Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge-Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT Numer. Math. 47, 259–275 (2007)MathSciNetMATHCrossRef
Metadata
Title
An interpolation-based method for solving Volterra integral equations
Publication date
19-04-2021
Published in
Journal of Applied Mathematics and Computing / Issue 2/2022
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-021-01547-4

Other articles of this Issue 2/2022

Journal of Applied Mathematics and Computing 2/2022 Go to the issue

Premium Partner