Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2021

24-05-2021

An Investigation into the Fracture Behavior of the IN625 Hot-Rolled Superalloy

Authors: B. Salehnasab, D. Zarifpour, J. Marzbanrad, G. Samimi

Published in: Journal of Materials Engineering and Performance | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, an experimental investigation of the effects of the rolling direction on the fracture behavior of the IN625 superalloy by using the digital image correlation method is studied. The three different specimens in the different rolling directions (0°, 45°, and 90°) were interpreted using a hot-rolled IN625 plate for the tests. To evaluate the fracture behavior of the IN625, crack mouth opening displacement (CMOD), crack length, the full-field displacement of the CT specimens were measured using the digital image correlation method, and the KI, KII, and T-stress were calculated for all specimens. The scanning electron microscopy is used to evaluate fracture mechanisms and characteristics of the specimens. The results demonstrate that the fracture parameters of the IN625 superalloy can be affected by the rolling direction and specimen B has a greater CMOD value than other specimens. Also, the SIFs and T-stress increased at first and then decreased by increasing the crack length for all specimens. Furthermore, the fractography showed that a combination of ductile fracture dimples and quasi-cleavage facets, specific to the equiaxed Ni-based superalloy, have occurred in all specimens.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Salehnasab, E. Poursaeidi, S.A. Mortazavi and G.H. Farokhian, Hot Corrosion Failure in the First Stage Nozzle of a Gas Turbine Engine, Eng. Fail. Anal., 2016, 60, p 316–325.CrossRef B. Salehnasab, E. Poursaeidi, S.A. Mortazavi and G.H. Farokhian, Hot Corrosion Failure in the First Stage Nozzle of a Gas Turbine Engine, Eng. Fail. Anal., 2016, 60, p 316–325.CrossRef
2.
go back to reference J. Wang, X. Hu, K. Yuan, W. Meng and P. Li, Impact Resistance Prediction of Superalloy Honeycomb using Modified Johnson-Cook Constitutive Model and Fracture Criterion, Int. J. Impact Eng, 2019, 131, p 66–77.CrossRef J. Wang, X. Hu, K. Yuan, W. Meng and P. Li, Impact Resistance Prediction of Superalloy Honeycomb using Modified Johnson-Cook Constitutive Model and Fracture Criterion, Int. J. Impact Eng, 2019, 131, p 66–77.CrossRef
3.
go back to reference P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Des., 2016, 112, p 290–299.CrossRef P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Des., 2016, 112, p 290–299.CrossRef
4.
go back to reference C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng. A, 2017, 705, p 20–31.CrossRef C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng. A, 2017, 705, p 20–31.CrossRef
5.
go back to reference Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Diffraction and Single-Crystal Elastic Constants of Inconel 625 at Room and Elevated Temperatures Determined by Neutron Diffraction, Mater. Sci. Eng. A, 2016, 674, p 406–412.CrossRef Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Diffraction and Single-Crystal Elastic Constants of Inconel 625 at Room and Elevated Temperatures Determined by Neutron Diffraction, Mater. Sci. Eng. A, 2016, 674, p 406–412.CrossRef
6.
go back to reference A.M. Ganesh Puppala, S. Sathyanarayanan, G. Rakesh Kaul, R.C. Sasikala and L.M.K. Prasad, Evaluation of Fracture Toughness and Impact Toughness of Laser Rapid Manufactured Inconel-625 Structures and their Co-Relation, Mater. Design, 2014, 59, p 509–515.CrossRef A.M. Ganesh Puppala, S. Sathyanarayanan, G. Rakesh Kaul, R.C. Sasikala and L.M.K. Prasad, Evaluation of Fracture Toughness and Impact Toughness of Laser Rapid Manufactured Inconel-625 Structures and their Co-Relation, Mater. Design, 2014, 59, p 509–515.CrossRef
7.
go back to reference A. Masoud Mirhosseini, S. Adib Nazari, A. Maghsoud Pour, S. Etemadi Haghighi and M. Zareh, Failure Analysis of First Stage Nozzle in a Heavy-Duty Gas Turbine, Eng. Fail. Anal., 2019, 109, p 104303.CrossRef A. Masoud Mirhosseini, S. Adib Nazari, A. Maghsoud Pour, S. Etemadi Haghighi and M. Zareh, Failure Analysis of First Stage Nozzle in a Heavy-Duty Gas Turbine, Eng. Fail. Anal., 2019, 109, p 104303.CrossRef
8.
go back to reference H. Kazempour-Liasi, A. Shafiei and Z. Lalegani, Failure Analysis of First and Second Stage Gas Turbine Blades, J. Fail. Anal. Prevent., 2019, 19, p 1673–1682.CrossRef H. Kazempour-Liasi, A. Shafiei and Z. Lalegani, Failure Analysis of First and Second Stage Gas Turbine Blades, J. Fail. Anal. Prevent., 2019, 19, p 1673–1682.CrossRef
9.
go back to reference S.M. Muthu, Investigations of Hot Corrosion Resistance of HVOF Coated Fe Based Superalloy A-286 in Simulated Gas Turbine Environment, Eng. Fail. Anal., 2020, 107, p 104224.CrossRef S.M. Muthu, Investigations of Hot Corrosion Resistance of HVOF Coated Fe Based Superalloy A-286 in Simulated Gas Turbine Environment, Eng. Fail. Anal., 2020, 107, p 104224.CrossRef
10.
go back to reference E. Poursaeidi, M. Aieneravaie, R. Bannazadeh and K. Torkashvand, Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography, J. Fail. Anal. Prev., 2019, 19(5), p 1358–1369.CrossRef E. Poursaeidi, M. Aieneravaie, R. Bannazadeh and K. Torkashvand, Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography, J. Fail. Anal. Prev., 2019, 19(5), p 1358–1369.CrossRef
11.
go back to reference B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef
12.
go back to reference L.G.I. Jandejsek, M. Šperl and D. Vavrˇík, Analysis of Standard Fracture Toughness Test Based on Digital Image Correlation Data, Eng. Fract. Mech., 2017, 182, p 607–620.CrossRef L.G.I. Jandejsek, M. Šperl and D. Vavrˇík, Analysis of Standard Fracture Toughness Test Based on Digital Image Correlation Data, Eng. Fract. Mech., 2017, 182, p 607–620.CrossRef
13.
go back to reference Y. Li and M. Zhou, Effect of Competing Mechanisms on Fracture Toughness of Metals with Ductile Grain Structures, Eng. Fract. Mech., 2019, 205, p 14–27.CrossRef Y. Li and M. Zhou, Effect of Competing Mechanisms on Fracture Toughness of Metals with Ductile Grain Structures, Eng. Fract. Mech., 2019, 205, p 14–27.CrossRef
14.
go back to reference K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao and M. Sutton, The Effect of Constraint on CTOD Fracture Toughness of API X65 Steel, Eng. Fract. Mech., 2014, 124–125, p 167–181.CrossRef K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao and M. Sutton, The Effect of Constraint on CTOD Fracture Toughness of API X65 Steel, Eng. Fract. Mech., 2014, 124–125, p 167–181.CrossRef
15.
go back to reference T. Zhang, S. Wang and W. Wang, A Unified Energy Release Rate Based Model to Determine the Fracture Toughness of Ductile Metals from Unnotched Specimens, Int. J. Mech. Sci., 2019, 150, p 35–50.CrossRef T. Zhang, S. Wang and W. Wang, A Unified Energy Release Rate Based Model to Determine the Fracture Toughness of Ductile Metals from Unnotched Specimens, Int. J. Mech. Sci., 2019, 150, p 35–50.CrossRef
16.
go back to reference A. International, "ASTM E1820-18ae1, Standard Test Method for Measurement of Fracture Toughness," 2018 A. International, "ASTM E1820-18ae1, Standard Test Method for Measurement of Fracture Toughness," 2018
17.
go back to reference B. Lin, S. Alshammrei, T. Wigger and J. Tong, Characterisation of Fatigue Crack Tip Field in the Presence of Significant Plasticity, Theoret. Appl. Fract. Mech., 2019, 103, p 102298.CrossRef B. Lin, S. Alshammrei, T. Wigger and J. Tong, Characterisation of Fatigue Crack Tip Field in the Presence of Significant Plasticity, Theoret. Appl. Fract. Mech., 2019, 103, p 102298.CrossRef
18.
go back to reference I. Yamaguchi, A Laser-Speckle Strain Gauge, J. Phys. E Sci. Instrum., 1981, 14(11), p 1270–1273.CrossRef I. Yamaguchi, A Laser-Speckle Strain Gauge, J. Phys. E Sci. Instrum., 1981, 14(11), p 1270–1273.CrossRef
19.
go back to reference S. Roux, J. Réthoré and F. Hild, Digital Image Correlation and Fracture: an Advanced Technique for Estimating Stress Intensity Factors of 2D and 3D Cracks, J. Phys. D Appl. Phys., 2009, 42(21), p 214004.CrossRef S. Roux, J. Réthoré and F. Hild, Digital Image Correlation and Fracture: an Advanced Technique for Estimating Stress Intensity Factors of 2D and 3D Cracks, J. Phys. D Appl. Phys., 2009, 42(21), p 214004.CrossRef
20.
go back to reference Z.L. Xie, H.F. Zhou, L.J. Lu and Z.A. Chen, An Investigation into Fracture Behavior of Geopolymer Concrete with Digital Image Correlation Technique, Constr. Build. Mater., 2017, 155, p 371–380.CrossRef Z.L. Xie, H.F. Zhou, L.J. Lu and Z.A. Chen, An Investigation into Fracture Behavior of Geopolymer Concrete with Digital Image Correlation Technique, Constr. Build. Mater., 2017, 155, p 371–380.CrossRef
21.
go back to reference K. Fujita and A. Yoshida, The Effect of Changing the Rolling Direction on the Rolling Contact Fatigue Lives of Annealed and Case-Hardened Steel Rollers, Wear, 1977, 43(3), p 315–327.CrossRef K. Fujita and A. Yoshida, The Effect of Changing the Rolling Direction on the Rolling Contact Fatigue Lives of Annealed and Case-Hardened Steel Rollers, Wear, 1977, 43(3), p 315–327.CrossRef
22.
go back to reference W.R. Tyfour and J.H. Beynon, The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation, Tribol. Int., 1994, 27(4), p 273–282.CrossRef W.R. Tyfour and J.H. Beynon, The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation, Tribol. Int., 1994, 27(4), p 273–282.CrossRef
23.
go back to reference D. Rahmatabadi, M. Pahlavani, A. Bayati, R. Hashemi and J. Marzbanrad, Evaluation of Fracture Toughness and Rupture Energy Absorption Capacity of As-Rolled LZ71 and LZ91 Mg Alloy Sheet, Mater. Res. Express, 2018, 6(3), p 036517.CrossRef D. Rahmatabadi, M. Pahlavani, A. Bayati, R. Hashemi and J. Marzbanrad, Evaluation of Fracture Toughness and Rupture Energy Absorption Capacity of As-Rolled LZ71 and LZ91 Mg Alloy Sheet, Mater. Res. Express, 2018, 6(3), p 036517.CrossRef
24.
go back to reference S.S. Raza, T. Ahmad, M. Kamran, X. Zhang, M.A. Basit, M.U. Manzoor, A. Inam, O.M. Butt and M. Abrar, Effect of Hot Rolling on Microstructures and Mechanical Properties of Ni Base Superalloy, Vacuum, 2020, 174, p 109204.CrossRef S.S. Raza, T. Ahmad, M. Kamran, X. Zhang, M.A. Basit, M.U. Manzoor, A. Inam, O.M. Butt and M. Abrar, Effect of Hot Rolling on Microstructures and Mechanical Properties of Ni Base Superalloy, Vacuum, 2020, 174, p 109204.CrossRef
25.
go back to reference S. İriç and A.O. Ayhan, Dependence of Fracture Toughness on Rolling Direction in Aluminium 7075 Alloys, Acta Phys. Pol. A, 2017, 132(3), p 892–895.CrossRef S. İriç and A.O. Ayhan, Dependence of Fracture Toughness on Rolling Direction in Aluminium 7075 Alloys, Acta Phys. Pol. A, 2017, 132(3), p 892–895.CrossRef
26.
go back to reference G. Lesiuk, B. Rymsza, J. Rabiega, J.A.F.O. Correia, A.M.P. De Jesus and R. Calcada, Influence of Loading Direction on the Static and Fatigue Fracture Properties of the Long Term Operated Metallic Materials, Eng. Fail. Anal., 2019, 96, p 409–425.CrossRef G. Lesiuk, B. Rymsza, J. Rabiega, J.A.F.O. Correia, A.M.P. De Jesus and R. Calcada, Influence of Loading Direction on the Static and Fatigue Fracture Properties of the Long Term Operated Metallic Materials, Eng. Fail. Anal., 2019, 96, p 409–425.CrossRef
27.
go back to reference I. Topic, H.W. Höppel and M. Göken, Influence of Rolling Direction on Strength and Ductility of Aluminium and Aluminium Alloys Produced by Accumulative Roll Bonding, J. Mater. Sci., 2008, 43(23), p 7320–7325.CrossRef I. Topic, H.W. Höppel and M. Göken, Influence of Rolling Direction on Strength and Ductility of Aluminium and Aluminium Alloys Produced by Accumulative Roll Bonding, J. Mater. Sci., 2008, 43(23), p 7320–7325.CrossRef
28.
go back to reference R.B. Figueiredo and T.G. Langdon, Influence of Rolling Direction on Flow and Cavitation in a Superplastic Magnesium Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 556, p 211–220.CrossRef R.B. Figueiredo and T.G. Langdon, Influence of Rolling Direction on Flow and Cavitation in a Superplastic Magnesium Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 556, p 211–220.CrossRef
29.
go back to reference R. Uscinowicz, The Effect of Rolling Direction on the Creep Process of Al–Cu Bimetallic Sheet, Mater. Des., 2013, 49, p 693–700.CrossRef R. Uscinowicz, The Effect of Rolling Direction on the Creep Process of Al–Cu Bimetallic Sheet, Mater. Des., 2013, 49, p 693–700.CrossRef
30.
go back to reference H. Zhang, G. Huang, H.J. Roven, L. Wang and F. Pan, Influence of Different Rolling Routes on the Microstructure Evolution and Properties of AZ31 Magnesium Alloy Sheets, Mater. Des., 2013, 50, p 667–673.CrossRef H. Zhang, G. Huang, H.J. Roven, L. Wang and F. Pan, Influence of Different Rolling Routes on the Microstructure Evolution and Properties of AZ31 Magnesium Alloy Sheets, Mater. Des., 2013, 50, p 667–673.CrossRef
31.
go back to reference W.C. Lee and Z.R. Liu, Effects of Specimen Width and Rolling Direction on the Mechanical Properties of Beryllium Copper Alloy C17200, IOP Conf. Series Mater. Sci. Eng., 2015, 103, p 012051.CrossRef W.C. Lee and Z.R. Liu, Effects of Specimen Width and Rolling Direction on the Mechanical Properties of Beryllium Copper Alloy C17200, IOP Conf. Series Mater. Sci. Eng., 2015, 103, p 012051.CrossRef
32.
go back to reference L.M. Najib, A. Alisibramulisi, N.M. Amin, I.A.A. Bakar, S. Hasim, The Effect of Rolling Direction to the Tensile Properties of AA5083 Specimen, InCIEC 2014, R. Hassan, M. Yusoff, A. Alisibramulisi, N. Mohd Amin, Z. Ismail Eds., 2015//, 2015 (Singapore), Springer Singapore, pp 779-787 L.M. Najib, A. Alisibramulisi, N.M. Amin, I.A.A. Bakar, S. Hasim, The Effect of Rolling Direction to the Tensile Properties of AA5083 Specimen, InCIEC 2014, R. Hassan, M. Yusoff, A. Alisibramulisi, N. Mohd Amin, Z. Ismail Eds., 2015//, 2015 (Singapore), Springer Singapore, pp 779-787
33.
go back to reference W. Khraisat, W. Abu Jadayil, Y. Al-Zain and S.E. Musmar, The Effect of Rolling Direction on the Weld Structure and Mechanical Properties of DP 1000 steel, Cogent Eng., 2018, 5(1), p 1491019.CrossRef W. Khraisat, W. Abu Jadayil, Y. Al-Zain and S.E. Musmar, The Effect of Rolling Direction on the Weld Structure and Mechanical Properties of DP 1000 steel, Cogent Eng., 2018, 5(1), p 1491019.CrossRef
34.
go back to reference P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad and L.M. Kukreja, Fatigue and Fracture Toughness Characteristics of Laser Rapid Manufactured Inconel 625 Structures, Mater. Sci. Eng. A, 2010, 527(29), p 7490–7497.CrossRef P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad and L.M. Kukreja, Fatigue and Fracture Toughness Characteristics of Laser Rapid Manufactured Inconel 625 Structures, Mater. Sci. Eng. A, 2010, 527(29), p 7490–7497.CrossRef
35.
go back to reference D. Martelo, D. Sampath, A. Monici, R. Morana and R. Akid, Correlative Analysis of Digital Imaging, Acoustic Emission, and Fracture Surface Topography on Hydrogen Assisted Cracking in Ni-alloy 625+, Eng. Fract. Mech., 2019, 221, p 106678.CrossRef D. Martelo, D. Sampath, A. Monici, R. Morana and R. Akid, Correlative Analysis of Digital Imaging, Acoustic Emission, and Fracture Surface Topography on Hydrogen Assisted Cracking in Ni-alloy 625+, Eng. Fract. Mech., 2019, 221, p 106678.CrossRef
36.
go back to reference Y.-C. Zhang, W. Jiang, S.-T. Tu, X.-C. Zhang, Y.-J. Ye and R.-Z. Wang, Experimental Investigation and Numerical Prediction on Creep Crack Growth Behavior of the Solution Treated Inconel 625 Superalloy, Eng. Fract. Mech., 2018, 199, p 327–342.CrossRef Y.-C. Zhang, W. Jiang, S.-T. Tu, X.-C. Zhang, Y.-J. Ye and R.-Z. Wang, Experimental Investigation and Numerical Prediction on Creep Crack Growth Behavior of the Solution Treated Inconel 625 Superalloy, Eng. Fract. Mech., 2018, 199, p 327–342.CrossRef
37.
go back to reference B. Bahrami, M.R. Ayatollahi and A.R. Torabi, Application of Digital Image Correlation Method for Determination of Mixed Mode Stress Intensity Factors in Sharp Notches, Opt. Lasers Eng., 2020, 124, p 105830.CrossRef B. Bahrami, M.R. Ayatollahi and A.R. Torabi, Application of Digital Image Correlation Method for Determination of Mixed Mode Stress Intensity Factors in Sharp Notches, Opt. Lasers Eng., 2020, 124, p 105830.CrossRef
38.
go back to reference M. Vormwald, Y. Hos, J.L.F. Freire, G.L.G. Gonzáles and J.G. Díaz, Crack tip Displacement Fields Measured by Digital Image Correlation for Evaluating Variable Mode-Mixity during Fatigue Crack Growth, Int. J. Fatigue, 2018, 115, p 53–66.CrossRef M. Vormwald, Y. Hos, J.L.F. Freire, G.L.G. Gonzáles and J.G. Díaz, Crack tip Displacement Fields Measured by Digital Image Correlation for Evaluating Variable Mode-Mixity during Fatigue Crack Growth, Int. J. Fatigue, 2018, 115, p 53–66.CrossRef
39.
go back to reference S.H. Ju, C.Y. Chiu and B.J. Jhao, Determination of V-notch SIFs in Multi-Material Anisotropic Wedges by Digital Correlation Experiments, Int. J. Solids Struct., 2010, 47(7), p 894–900.CrossRef S.H. Ju, C.Y. Chiu and B.J. Jhao, Determination of V-notch SIFs in Multi-Material Anisotropic Wedges by Digital Correlation Experiments, Int. J. Solids Struct., 2010, 47(7), p 894–900.CrossRef
40.
go back to reference A.B. Patil, S.P. Toppo and R.K.P. Singh, Digital Image Correlation (DIC) Technique for Fracture Toughness Calculation of Microalloyed Steel (38MnVS6), IOP Conf. Series Mater. Sci. Eng., 2018, 422, p 012016.CrossRef A.B. Patil, S.P. Toppo and R.K.P. Singh, Digital Image Correlation (DIC) Technique for Fracture Toughness Calculation of Microalloyed Steel (38MnVS6), IOP Conf. Series Mater. Sci. Eng., 2018, 422, p 012016.CrossRef
41.
go back to reference M.R. Ayatollahi and M. Moazzami, Digital Image Correlation Method for Calculating Coefficients of Williams Expansion in Compact Tension Specimen, Opt. Lasers Eng., 2017, 90, p 26–33.CrossRef M.R. Ayatollahi and M. Moazzami, Digital Image Correlation Method for Calculating Coefficients of Williams Expansion in Compact Tension Specimen, Opt. Lasers Eng., 2017, 90, p 26–33.CrossRef
42.
go back to reference W.H. Kan, C. Albino, D. Dias-da-Costa, K. Dolman, T. Lucey, X. Tang, J. Cairney and G. Proust, Fracture Toughness Testing using Photogrammetry and Digital Image Correlation, MethodsX, 2018, 5, p 1166–1177.CrossRef W.H. Kan, C. Albino, D. Dias-da-Costa, K. Dolman, T. Lucey, X. Tang, J. Cairney and G. Proust, Fracture Toughness Testing using Photogrammetry and Digital Image Correlation, MethodsX, 2018, 5, p 1166–1177.CrossRef
43.
go back to reference K.G. Kodancha and S.K. Kudari, Variation of Stress Intensity Factor and Elastic T-stress Along the Crack-Front in Finite Thickness Plates, Frattura ed Integrità Strutturale, 2013, 3(8), p 45–51.CrossRef K.G. Kodancha and S.K. Kudari, Variation of Stress Intensity Factor and Elastic T-stress Along the Crack-Front in Finite Thickness Plates, Frattura ed Integrità Strutturale, 2013, 3(8), p 45–51.CrossRef
44.
go back to reference J.J. Zhang, Chapter 4 - Basic rock fracture mechanics, Applied Petroleum Geomechanicsed., J.J. Zhang, Ed., Gulf Professional Publishing, 2019, p 133-161 J.J. Zhang, Chapter 4 - Basic rock fracture mechanics, Applied Petroleum Geomechanicsed., J.J. Zhang, Ed., Gulf Professional Publishing, 2019, p 133-161
45.
go back to reference M.L. Williams, G.A. Laboratory, On the Stress Distribution at the Base of a Stationary Crack, Guggenheim Aeronautical Laboratory, 1957 M.L. Williams, G.A. Laboratory, On the Stress Distribution at the Base of a Stationary Crack, Guggenheim Aeronautical Laboratory, 1957
46.
go back to reference M. Abshirini, M.Y. Dehnavi, M.A. Beni and N. Soltani, Interaction of Two Parallel U-notches with Tip Cracks in PMMA Plates under Tension using Digital Image Correlation, Theoret. Appl. Fract. Mech., 2014, 70, p 75–82.CrossRef M. Abshirini, M.Y. Dehnavi, M.A. Beni and N. Soltani, Interaction of Two Parallel U-notches with Tip Cracks in PMMA Plates under Tension using Digital Image Correlation, Theoret. Appl. Fract. Mech., 2014, 70, p 75–82.CrossRef
47.
go back to reference J.R. Yates, M. Zanganeh and Y.H. Tai, Quantifying Crack Tip Displacement Fields with DIC, Eng. Fract. Mech., 2010, 77(11), p 2063–2076.CrossRef J.R. Yates, M. Zanganeh and Y.H. Tai, Quantifying Crack Tip Displacement Fields with DIC, Eng. Fract. Mech., 2010, 77(11), p 2063–2076.CrossRef
48.
go back to reference M.R. Ayatollahi and M. Nejati, Determination of NSIFs and Coefficients of Higher Order Terms for Sharp Notches using Finite Element Method, Int. J. Mech. Sci., 2011, 53(3), p 164–177.CrossRef M.R. Ayatollahi and M. Nejati, Determination of NSIFs and Coefficients of Higher Order Terms for Sharp Notches using Finite Element Method, Int. J. Mech. Sci., 2011, 53(3), p 164–177.CrossRef
49.
go back to reference ASTM, "ASTM E399-20, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials," ASTM International 2020 ASTM, "ASTM E399-20, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials," ASTM International 2020
51.
go back to reference N. Saini, C. Pandey, M.M. Mahapatra, H.K. Narang, R.S. Mulik and P. Kumar, A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel, Eng. Fail. Anal., 2017, 81, p 245–253.CrossRef N. Saini, C. Pandey, M.M. Mahapatra, H.K. Narang, R.S. Mulik and P. Kumar, A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel, Eng. Fail. Anal., 2017, 81, p 245–253.CrossRef
52.
go back to reference C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes, Eng. Fail. Anal., 2017, 71, p 131–147.CrossRef C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes, Eng. Fail. Anal., 2017, 71, p 131–147.CrossRef
53.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Effect of Creep Phenomena on Room-Temperature Tensile Properties of Cast & Forged P91 Steel, Eng. Fail. Anal., 2017, 79, p 385–396.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Effect of Creep Phenomena on Room-Temperature Tensile Properties of Cast & Forged P91 Steel, Eng. Fail. Anal., 2017, 79, p 385–396.CrossRef
Metadata
Title
An Investigation into the Fracture Behavior of the IN625 Hot-Rolled Superalloy
Authors
B. Salehnasab
D. Zarifpour
J. Marzbanrad
G. Samimi
Publication date
24-05-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05895-x

Other articles of this Issue 10/2021

Journal of Materials Engineering and Performance 10/2021 Go to the issue

Premium Partners