Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

24.05.2021

An Investigation into the Fracture Behavior of the IN625 Hot-Rolled Superalloy

verfasst von: B. Salehnasab, D. Zarifpour, J. Marzbanrad, G. Samimi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, an experimental investigation of the effects of the rolling direction on the fracture behavior of the IN625 superalloy by using the digital image correlation method is studied. The three different specimens in the different rolling directions (0°, 45°, and 90°) were interpreted using a hot-rolled IN625 plate for the tests. To evaluate the fracture behavior of the IN625, crack mouth opening displacement (CMOD), crack length, the full-field displacement of the CT specimens were measured using the digital image correlation method, and the KI, KII, and T-stress were calculated for all specimens. The scanning electron microscopy is used to evaluate fracture mechanisms and characteristics of the specimens. The results demonstrate that the fracture parameters of the IN625 superalloy can be affected by the rolling direction and specimen B has a greater CMOD value than other specimens. Also, the SIFs and T-stress increased at first and then decreased by increasing the crack length for all specimens. Furthermore, the fractography showed that a combination of ductile fracture dimples and quasi-cleavage facets, specific to the equiaxed Ni-based superalloy, have occurred in all specimens.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Salehnasab, E. Poursaeidi, S.A. Mortazavi and G.H. Farokhian, Hot Corrosion Failure in the First Stage Nozzle of a Gas Turbine Engine, Eng. Fail. Anal., 2016, 60, p 316–325.CrossRef B. Salehnasab, E. Poursaeidi, S.A. Mortazavi and G.H. Farokhian, Hot Corrosion Failure in the First Stage Nozzle of a Gas Turbine Engine, Eng. Fail. Anal., 2016, 60, p 316–325.CrossRef
2.
Zurück zum Zitat J. Wang, X. Hu, K. Yuan, W. Meng and P. Li, Impact Resistance Prediction of Superalloy Honeycomb using Modified Johnson-Cook Constitutive Model and Fracture Criterion, Int. J. Impact Eng, 2019, 131, p 66–77.CrossRef J. Wang, X. Hu, K. Yuan, W. Meng and P. Li, Impact Resistance Prediction of Superalloy Honeycomb using Modified Johnson-Cook Constitutive Model and Fracture Criterion, Int. J. Impact Eng, 2019, 131, p 66–77.CrossRef
3.
Zurück zum Zitat P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Des., 2016, 112, p 290–299.CrossRef P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Des., 2016, 112, p 290–299.CrossRef
4.
Zurück zum Zitat C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng. A, 2017, 705, p 20–31.CrossRef C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng. A, 2017, 705, p 20–31.CrossRef
5.
Zurück zum Zitat Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Diffraction and Single-Crystal Elastic Constants of Inconel 625 at Room and Elevated Temperatures Determined by Neutron Diffraction, Mater. Sci. Eng. A, 2016, 674, p 406–412.CrossRef Z. Wang, A.D. Stoica, D. Ma and A.M. Beese, Diffraction and Single-Crystal Elastic Constants of Inconel 625 at Room and Elevated Temperatures Determined by Neutron Diffraction, Mater. Sci. Eng. A, 2016, 674, p 406–412.CrossRef
6.
Zurück zum Zitat A.M. Ganesh Puppala, S. Sathyanarayanan, G. Rakesh Kaul, R.C. Sasikala and L.M.K. Prasad, Evaluation of Fracture Toughness and Impact Toughness of Laser Rapid Manufactured Inconel-625 Structures and their Co-Relation, Mater. Design, 2014, 59, p 509–515.CrossRef A.M. Ganesh Puppala, S. Sathyanarayanan, G. Rakesh Kaul, R.C. Sasikala and L.M.K. Prasad, Evaluation of Fracture Toughness and Impact Toughness of Laser Rapid Manufactured Inconel-625 Structures and their Co-Relation, Mater. Design, 2014, 59, p 509–515.CrossRef
7.
Zurück zum Zitat A. Masoud Mirhosseini, S. Adib Nazari, A. Maghsoud Pour, S. Etemadi Haghighi and M. Zareh, Failure Analysis of First Stage Nozzle in a Heavy-Duty Gas Turbine, Eng. Fail. Anal., 2019, 109, p 104303.CrossRef A. Masoud Mirhosseini, S. Adib Nazari, A. Maghsoud Pour, S. Etemadi Haghighi and M. Zareh, Failure Analysis of First Stage Nozzle in a Heavy-Duty Gas Turbine, Eng. Fail. Anal., 2019, 109, p 104303.CrossRef
8.
Zurück zum Zitat H. Kazempour-Liasi, A. Shafiei and Z. Lalegani, Failure Analysis of First and Second Stage Gas Turbine Blades, J. Fail. Anal. Prevent., 2019, 19, p 1673–1682.CrossRef H. Kazempour-Liasi, A. Shafiei and Z. Lalegani, Failure Analysis of First and Second Stage Gas Turbine Blades, J. Fail. Anal. Prevent., 2019, 19, p 1673–1682.CrossRef
9.
Zurück zum Zitat S.M. Muthu, Investigations of Hot Corrosion Resistance of HVOF Coated Fe Based Superalloy A-286 in Simulated Gas Turbine Environment, Eng. Fail. Anal., 2020, 107, p 104224.CrossRef S.M. Muthu, Investigations of Hot Corrosion Resistance of HVOF Coated Fe Based Superalloy A-286 in Simulated Gas Turbine Environment, Eng. Fail. Anal., 2020, 107, p 104224.CrossRef
10.
Zurück zum Zitat E. Poursaeidi, M. Aieneravaie, R. Bannazadeh and K. Torkashvand, Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography, J. Fail. Anal. Prev., 2019, 19(5), p 1358–1369.CrossRef E. Poursaeidi, M. Aieneravaie, R. Bannazadeh and K. Torkashvand, Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography, J. Fail. Anal. Prev., 2019, 19(5), p 1358–1369.CrossRef
11.
Zurück zum Zitat B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef
12.
Zurück zum Zitat L.G.I. Jandejsek, M. Šperl and D. Vavrˇík, Analysis of Standard Fracture Toughness Test Based on Digital Image Correlation Data, Eng. Fract. Mech., 2017, 182, p 607–620.CrossRef L.G.I. Jandejsek, M. Šperl and D. Vavrˇík, Analysis of Standard Fracture Toughness Test Based on Digital Image Correlation Data, Eng. Fract. Mech., 2017, 182, p 607–620.CrossRef
13.
Zurück zum Zitat Y. Li and M. Zhou, Effect of Competing Mechanisms on Fracture Toughness of Metals with Ductile Grain Structures, Eng. Fract. Mech., 2019, 205, p 14–27.CrossRef Y. Li and M. Zhou, Effect of Competing Mechanisms on Fracture Toughness of Metals with Ductile Grain Structures, Eng. Fract. Mech., 2019, 205, p 14–27.CrossRef
14.
Zurück zum Zitat K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao and M. Sutton, The Effect of Constraint on CTOD Fracture Toughness of API X65 Steel, Eng. Fract. Mech., 2014, 124–125, p 167–181.CrossRef K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao and M. Sutton, The Effect of Constraint on CTOD Fracture Toughness of API X65 Steel, Eng. Fract. Mech., 2014, 124–125, p 167–181.CrossRef
15.
Zurück zum Zitat T. Zhang, S. Wang and W. Wang, A Unified Energy Release Rate Based Model to Determine the Fracture Toughness of Ductile Metals from Unnotched Specimens, Int. J. Mech. Sci., 2019, 150, p 35–50.CrossRef T. Zhang, S. Wang and W. Wang, A Unified Energy Release Rate Based Model to Determine the Fracture Toughness of Ductile Metals from Unnotched Specimens, Int. J. Mech. Sci., 2019, 150, p 35–50.CrossRef
16.
Zurück zum Zitat A. International, "ASTM E1820-18ae1, Standard Test Method for Measurement of Fracture Toughness," 2018 A. International, "ASTM E1820-18ae1, Standard Test Method for Measurement of Fracture Toughness," 2018
17.
Zurück zum Zitat B. Lin, S. Alshammrei, T. Wigger and J. Tong, Characterisation of Fatigue Crack Tip Field in the Presence of Significant Plasticity, Theoret. Appl. Fract. Mech., 2019, 103, p 102298.CrossRef B. Lin, S. Alshammrei, T. Wigger and J. Tong, Characterisation of Fatigue Crack Tip Field in the Presence of Significant Plasticity, Theoret. Appl. Fract. Mech., 2019, 103, p 102298.CrossRef
18.
Zurück zum Zitat I. Yamaguchi, A Laser-Speckle Strain Gauge, J. Phys. E Sci. Instrum., 1981, 14(11), p 1270–1273.CrossRef I. Yamaguchi, A Laser-Speckle Strain Gauge, J. Phys. E Sci. Instrum., 1981, 14(11), p 1270–1273.CrossRef
19.
Zurück zum Zitat S. Roux, J. Réthoré and F. Hild, Digital Image Correlation and Fracture: an Advanced Technique for Estimating Stress Intensity Factors of 2D and 3D Cracks, J. Phys. D Appl. Phys., 2009, 42(21), p 214004.CrossRef S. Roux, J. Réthoré and F. Hild, Digital Image Correlation and Fracture: an Advanced Technique for Estimating Stress Intensity Factors of 2D and 3D Cracks, J. Phys. D Appl. Phys., 2009, 42(21), p 214004.CrossRef
20.
Zurück zum Zitat Z.L. Xie, H.F. Zhou, L.J. Lu and Z.A. Chen, An Investigation into Fracture Behavior of Geopolymer Concrete with Digital Image Correlation Technique, Constr. Build. Mater., 2017, 155, p 371–380.CrossRef Z.L. Xie, H.F. Zhou, L.J. Lu and Z.A. Chen, An Investigation into Fracture Behavior of Geopolymer Concrete with Digital Image Correlation Technique, Constr. Build. Mater., 2017, 155, p 371–380.CrossRef
21.
Zurück zum Zitat K. Fujita and A. Yoshida, The Effect of Changing the Rolling Direction on the Rolling Contact Fatigue Lives of Annealed and Case-Hardened Steel Rollers, Wear, 1977, 43(3), p 315–327.CrossRef K. Fujita and A. Yoshida, The Effect of Changing the Rolling Direction on the Rolling Contact Fatigue Lives of Annealed and Case-Hardened Steel Rollers, Wear, 1977, 43(3), p 315–327.CrossRef
22.
Zurück zum Zitat W.R. Tyfour and J.H. Beynon, The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation, Tribol. Int., 1994, 27(4), p 273–282.CrossRef W.R. Tyfour and J.H. Beynon, The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation, Tribol. Int., 1994, 27(4), p 273–282.CrossRef
23.
Zurück zum Zitat D. Rahmatabadi, M. Pahlavani, A. Bayati, R. Hashemi and J. Marzbanrad, Evaluation of Fracture Toughness and Rupture Energy Absorption Capacity of As-Rolled LZ71 and LZ91 Mg Alloy Sheet, Mater. Res. Express, 2018, 6(3), p 036517.CrossRef D. Rahmatabadi, M. Pahlavani, A. Bayati, R. Hashemi and J. Marzbanrad, Evaluation of Fracture Toughness and Rupture Energy Absorption Capacity of As-Rolled LZ71 and LZ91 Mg Alloy Sheet, Mater. Res. Express, 2018, 6(3), p 036517.CrossRef
24.
Zurück zum Zitat S.S. Raza, T. Ahmad, M. Kamran, X. Zhang, M.A. Basit, M.U. Manzoor, A. Inam, O.M. Butt and M. Abrar, Effect of Hot Rolling on Microstructures and Mechanical Properties of Ni Base Superalloy, Vacuum, 2020, 174, p 109204.CrossRef S.S. Raza, T. Ahmad, M. Kamran, X. Zhang, M.A. Basit, M.U. Manzoor, A. Inam, O.M. Butt and M. Abrar, Effect of Hot Rolling on Microstructures and Mechanical Properties of Ni Base Superalloy, Vacuum, 2020, 174, p 109204.CrossRef
25.
Zurück zum Zitat S. İriç and A.O. Ayhan, Dependence of Fracture Toughness on Rolling Direction in Aluminium 7075 Alloys, Acta Phys. Pol. A, 2017, 132(3), p 892–895.CrossRef S. İriç and A.O. Ayhan, Dependence of Fracture Toughness on Rolling Direction in Aluminium 7075 Alloys, Acta Phys. Pol. A, 2017, 132(3), p 892–895.CrossRef
26.
Zurück zum Zitat G. Lesiuk, B. Rymsza, J. Rabiega, J.A.F.O. Correia, A.M.P. De Jesus and R. Calcada, Influence of Loading Direction on the Static and Fatigue Fracture Properties of the Long Term Operated Metallic Materials, Eng. Fail. Anal., 2019, 96, p 409–425.CrossRef G. Lesiuk, B. Rymsza, J. Rabiega, J.A.F.O. Correia, A.M.P. De Jesus and R. Calcada, Influence of Loading Direction on the Static and Fatigue Fracture Properties of the Long Term Operated Metallic Materials, Eng. Fail. Anal., 2019, 96, p 409–425.CrossRef
27.
Zurück zum Zitat I. Topic, H.W. Höppel and M. Göken, Influence of Rolling Direction on Strength and Ductility of Aluminium and Aluminium Alloys Produced by Accumulative Roll Bonding, J. Mater. Sci., 2008, 43(23), p 7320–7325.CrossRef I. Topic, H.W. Höppel and M. Göken, Influence of Rolling Direction on Strength and Ductility of Aluminium and Aluminium Alloys Produced by Accumulative Roll Bonding, J. Mater. Sci., 2008, 43(23), p 7320–7325.CrossRef
28.
Zurück zum Zitat R.B. Figueiredo and T.G. Langdon, Influence of Rolling Direction on Flow and Cavitation in a Superplastic Magnesium Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 556, p 211–220.CrossRef R.B. Figueiredo and T.G. Langdon, Influence of Rolling Direction on Flow and Cavitation in a Superplastic Magnesium Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 556, p 211–220.CrossRef
29.
Zurück zum Zitat R. Uscinowicz, The Effect of Rolling Direction on the Creep Process of Al–Cu Bimetallic Sheet, Mater. Des., 2013, 49, p 693–700.CrossRef R. Uscinowicz, The Effect of Rolling Direction on the Creep Process of Al–Cu Bimetallic Sheet, Mater. Des., 2013, 49, p 693–700.CrossRef
30.
Zurück zum Zitat H. Zhang, G. Huang, H.J. Roven, L. Wang and F. Pan, Influence of Different Rolling Routes on the Microstructure Evolution and Properties of AZ31 Magnesium Alloy Sheets, Mater. Des., 2013, 50, p 667–673.CrossRef H. Zhang, G. Huang, H.J. Roven, L. Wang and F. Pan, Influence of Different Rolling Routes on the Microstructure Evolution and Properties of AZ31 Magnesium Alloy Sheets, Mater. Des., 2013, 50, p 667–673.CrossRef
31.
Zurück zum Zitat W.C. Lee and Z.R. Liu, Effects of Specimen Width and Rolling Direction on the Mechanical Properties of Beryllium Copper Alloy C17200, IOP Conf. Series Mater. Sci. Eng., 2015, 103, p 012051.CrossRef W.C. Lee and Z.R. Liu, Effects of Specimen Width and Rolling Direction on the Mechanical Properties of Beryllium Copper Alloy C17200, IOP Conf. Series Mater. Sci. Eng., 2015, 103, p 012051.CrossRef
32.
Zurück zum Zitat L.M. Najib, A. Alisibramulisi, N.M. Amin, I.A.A. Bakar, S. Hasim, The Effect of Rolling Direction to the Tensile Properties of AA5083 Specimen, InCIEC 2014, R. Hassan, M. Yusoff, A. Alisibramulisi, N. Mohd Amin, Z. Ismail Eds., 2015//, 2015 (Singapore), Springer Singapore, pp 779-787 L.M. Najib, A. Alisibramulisi, N.M. Amin, I.A.A. Bakar, S. Hasim, The Effect of Rolling Direction to the Tensile Properties of AA5083 Specimen, InCIEC 2014, R. Hassan, M. Yusoff, A. Alisibramulisi, N. Mohd Amin, Z. Ismail Eds., 2015//, 2015 (Singapore), Springer Singapore, pp 779-787
33.
Zurück zum Zitat W. Khraisat, W. Abu Jadayil, Y. Al-Zain and S.E. Musmar, The Effect of Rolling Direction on the Weld Structure and Mechanical Properties of DP 1000 steel, Cogent Eng., 2018, 5(1), p 1491019.CrossRef W. Khraisat, W. Abu Jadayil, Y. Al-Zain and S.E. Musmar, The Effect of Rolling Direction on the Weld Structure and Mechanical Properties of DP 1000 steel, Cogent Eng., 2018, 5(1), p 1491019.CrossRef
34.
Zurück zum Zitat P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad and L.M. Kukreja, Fatigue and Fracture Toughness Characteristics of Laser Rapid Manufactured Inconel 625 Structures, Mater. Sci. Eng. A, 2010, 527(29), p 7490–7497.CrossRef P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad and L.M. Kukreja, Fatigue and Fracture Toughness Characteristics of Laser Rapid Manufactured Inconel 625 Structures, Mater. Sci. Eng. A, 2010, 527(29), p 7490–7497.CrossRef
35.
Zurück zum Zitat D. Martelo, D. Sampath, A. Monici, R. Morana and R. Akid, Correlative Analysis of Digital Imaging, Acoustic Emission, and Fracture Surface Topography on Hydrogen Assisted Cracking in Ni-alloy 625+, Eng. Fract. Mech., 2019, 221, p 106678.CrossRef D. Martelo, D. Sampath, A. Monici, R. Morana and R. Akid, Correlative Analysis of Digital Imaging, Acoustic Emission, and Fracture Surface Topography on Hydrogen Assisted Cracking in Ni-alloy 625+, Eng. Fract. Mech., 2019, 221, p 106678.CrossRef
36.
Zurück zum Zitat Y.-C. Zhang, W. Jiang, S.-T. Tu, X.-C. Zhang, Y.-J. Ye and R.-Z. Wang, Experimental Investigation and Numerical Prediction on Creep Crack Growth Behavior of the Solution Treated Inconel 625 Superalloy, Eng. Fract. Mech., 2018, 199, p 327–342.CrossRef Y.-C. Zhang, W. Jiang, S.-T. Tu, X.-C. Zhang, Y.-J. Ye and R.-Z. Wang, Experimental Investigation and Numerical Prediction on Creep Crack Growth Behavior of the Solution Treated Inconel 625 Superalloy, Eng. Fract. Mech., 2018, 199, p 327–342.CrossRef
37.
Zurück zum Zitat B. Bahrami, M.R. Ayatollahi and A.R. Torabi, Application of Digital Image Correlation Method for Determination of Mixed Mode Stress Intensity Factors in Sharp Notches, Opt. Lasers Eng., 2020, 124, p 105830.CrossRef B. Bahrami, M.R. Ayatollahi and A.R. Torabi, Application of Digital Image Correlation Method for Determination of Mixed Mode Stress Intensity Factors in Sharp Notches, Opt. Lasers Eng., 2020, 124, p 105830.CrossRef
38.
Zurück zum Zitat M. Vormwald, Y. Hos, J.L.F. Freire, G.L.G. Gonzáles and J.G. Díaz, Crack tip Displacement Fields Measured by Digital Image Correlation for Evaluating Variable Mode-Mixity during Fatigue Crack Growth, Int. J. Fatigue, 2018, 115, p 53–66.CrossRef M. Vormwald, Y. Hos, J.L.F. Freire, G.L.G. Gonzáles and J.G. Díaz, Crack tip Displacement Fields Measured by Digital Image Correlation for Evaluating Variable Mode-Mixity during Fatigue Crack Growth, Int. J. Fatigue, 2018, 115, p 53–66.CrossRef
39.
Zurück zum Zitat S.H. Ju, C.Y. Chiu and B.J. Jhao, Determination of V-notch SIFs in Multi-Material Anisotropic Wedges by Digital Correlation Experiments, Int. J. Solids Struct., 2010, 47(7), p 894–900.CrossRef S.H. Ju, C.Y. Chiu and B.J. Jhao, Determination of V-notch SIFs in Multi-Material Anisotropic Wedges by Digital Correlation Experiments, Int. J. Solids Struct., 2010, 47(7), p 894–900.CrossRef
40.
Zurück zum Zitat A.B. Patil, S.P. Toppo and R.K.P. Singh, Digital Image Correlation (DIC) Technique for Fracture Toughness Calculation of Microalloyed Steel (38MnVS6), IOP Conf. Series Mater. Sci. Eng., 2018, 422, p 012016.CrossRef A.B. Patil, S.P. Toppo and R.K.P. Singh, Digital Image Correlation (DIC) Technique for Fracture Toughness Calculation of Microalloyed Steel (38MnVS6), IOP Conf. Series Mater. Sci. Eng., 2018, 422, p 012016.CrossRef
41.
Zurück zum Zitat M.R. Ayatollahi and M. Moazzami, Digital Image Correlation Method for Calculating Coefficients of Williams Expansion in Compact Tension Specimen, Opt. Lasers Eng., 2017, 90, p 26–33.CrossRef M.R. Ayatollahi and M. Moazzami, Digital Image Correlation Method for Calculating Coefficients of Williams Expansion in Compact Tension Specimen, Opt. Lasers Eng., 2017, 90, p 26–33.CrossRef
42.
Zurück zum Zitat W.H. Kan, C. Albino, D. Dias-da-Costa, K. Dolman, T. Lucey, X. Tang, J. Cairney and G. Proust, Fracture Toughness Testing using Photogrammetry and Digital Image Correlation, MethodsX, 2018, 5, p 1166–1177.CrossRef W.H. Kan, C. Albino, D. Dias-da-Costa, K. Dolman, T. Lucey, X. Tang, J. Cairney and G. Proust, Fracture Toughness Testing using Photogrammetry and Digital Image Correlation, MethodsX, 2018, 5, p 1166–1177.CrossRef
43.
Zurück zum Zitat K.G. Kodancha and S.K. Kudari, Variation of Stress Intensity Factor and Elastic T-stress Along the Crack-Front in Finite Thickness Plates, Frattura ed Integrità Strutturale, 2013, 3(8), p 45–51.CrossRef K.G. Kodancha and S.K. Kudari, Variation of Stress Intensity Factor and Elastic T-stress Along the Crack-Front in Finite Thickness Plates, Frattura ed Integrità Strutturale, 2013, 3(8), p 45–51.CrossRef
44.
Zurück zum Zitat J.J. Zhang, Chapter 4 - Basic rock fracture mechanics, Applied Petroleum Geomechanicsed., J.J. Zhang, Ed., Gulf Professional Publishing, 2019, p 133-161 J.J. Zhang, Chapter 4 - Basic rock fracture mechanics, Applied Petroleum Geomechanicsed., J.J. Zhang, Ed., Gulf Professional Publishing, 2019, p 133-161
45.
Zurück zum Zitat M.L. Williams, G.A. Laboratory, On the Stress Distribution at the Base of a Stationary Crack, Guggenheim Aeronautical Laboratory, 1957 M.L. Williams, G.A. Laboratory, On the Stress Distribution at the Base of a Stationary Crack, Guggenheim Aeronautical Laboratory, 1957
46.
Zurück zum Zitat M. Abshirini, M.Y. Dehnavi, M.A. Beni and N. Soltani, Interaction of Two Parallel U-notches with Tip Cracks in PMMA Plates under Tension using Digital Image Correlation, Theoret. Appl. Fract. Mech., 2014, 70, p 75–82.CrossRef M. Abshirini, M.Y. Dehnavi, M.A. Beni and N. Soltani, Interaction of Two Parallel U-notches with Tip Cracks in PMMA Plates under Tension using Digital Image Correlation, Theoret. Appl. Fract. Mech., 2014, 70, p 75–82.CrossRef
47.
Zurück zum Zitat J.R. Yates, M. Zanganeh and Y.H. Tai, Quantifying Crack Tip Displacement Fields with DIC, Eng. Fract. Mech., 2010, 77(11), p 2063–2076.CrossRef J.R. Yates, M. Zanganeh and Y.H. Tai, Quantifying Crack Tip Displacement Fields with DIC, Eng. Fract. Mech., 2010, 77(11), p 2063–2076.CrossRef
48.
Zurück zum Zitat M.R. Ayatollahi and M. Nejati, Determination of NSIFs and Coefficients of Higher Order Terms for Sharp Notches using Finite Element Method, Int. J. Mech. Sci., 2011, 53(3), p 164–177.CrossRef M.R. Ayatollahi and M. Nejati, Determination of NSIFs and Coefficients of Higher Order Terms for Sharp Notches using Finite Element Method, Int. J. Mech. Sci., 2011, 53(3), p 164–177.CrossRef
49.
Zurück zum Zitat ASTM, "ASTM E399-20, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials," ASTM International 2020 ASTM, "ASTM E399-20, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials," ASTM International 2020
51.
Zurück zum Zitat N. Saini, C. Pandey, M.M. Mahapatra, H.K. Narang, R.S. Mulik and P. Kumar, A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel, Eng. Fail. Anal., 2017, 81, p 245–253.CrossRef N. Saini, C. Pandey, M.M. Mahapatra, H.K. Narang, R.S. Mulik and P. Kumar, A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel, Eng. Fail. Anal., 2017, 81, p 245–253.CrossRef
52.
Zurück zum Zitat C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes, Eng. Fail. Anal., 2017, 71, p 131–147.CrossRef C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes, Eng. Fail. Anal., 2017, 71, p 131–147.CrossRef
53.
Zurück zum Zitat C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Effect of Creep Phenomena on Room-Temperature Tensile Properties of Cast & Forged P91 Steel, Eng. Fail. Anal., 2017, 79, p 385–396.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Effect of Creep Phenomena on Room-Temperature Tensile Properties of Cast & Forged P91 Steel, Eng. Fail. Anal., 2017, 79, p 385–396.CrossRef
Metadaten
Titel
An Investigation into the Fracture Behavior of the IN625 Hot-Rolled Superalloy
verfasst von
B. Salehnasab
D. Zarifpour
J. Marzbanrad
G. Samimi
Publikationsdatum
24.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05895-x

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.