Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

21.05.2021

Effect of an Addition of Vanadium on the Mechanical Properties of the A6061 Alloy Deformed by Accumulative Roll Bonding

verfasst von: Amane Sahli, Mabrouk Buabdallah, Djaffar Saidi, Said Grine, Said Allaoua, Oussama Djema, Bouzid Rahal, Mohamed Khalfa, Khawla Lazazi, Rafik Zekri

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aims of this work are to examine the effect of Vanadium (V) addition on the microstructure and mechanical proprieties of A6061 aluminum alloy processed by the accumulative roll bonding method (ARB). The results show that with the addition of 0.1 or 0.2 wt.% V to the A6061 ARBed alloy, the synergistic improvement in ductility and strength was successfully achieved. Indeed, the improvement in resistance can reach 22% compared to the ARBed A6061 without vanadium addition; the slight drop in elongation recorded is mainly because of detachments at the interfaces. These improvements are due to the combined effects of segregation and solid solution strengthening by the addition of V and the effects of grain refinement by ARB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.S. Lee and Z.C.Tang, Relationship Between Mechanical Properties and Microstructural Response of 6061-T6 Aluminum Alloy Impacted at Elevated Temperatures, Mater. Des., 2014, 58, p 116–124 W.S. Lee and Z.C.Tang, Relationship Between Mechanical Properties and Microstructural Response of 6061-T6 Aluminum Alloy Impacted at Elevated Temperatures, Mater. Des., 2014, 58, p 116–124
2.
Zurück zum Zitat I. Guzmán, E. Granda, B. Vargas, C. Cruz, Y. Avila, and J. Acevedo, Tensile and Fracture Behavior in 6061-T6 and 6061-T4 Aluminum Alloys Welded by Pulsed Metal Transfer GMAW, Int. J. Adv. Manuf. Technol. 2019, 103(5–8), p 2553–2562, https://doi.org/10.1007/s00170-019-03673-7 I. Guzmán, E. Granda, B. Vargas, C. Cruz, Y. Avila, and J. Acevedo, Tensile and Fracture Behavior in 6061-T6 and 6061-T4 Aluminum Alloys Welded by Pulsed Metal Transfer GMAW, Int. J. Adv. Manuf. Technol. 2019, 103(5–8), p 2553–2562, https://​doi.​org/​10.​1007/​s00170-019-03673-7
3.
Zurück zum Zitat A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54(15), p 3933–3939 A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54(15), p 3933–3939
4.
Zurück zum Zitat J.L. González-Velázquez, Strengthening Mechanisms, Mechanical Behavior and Fracture of Engineering Materials, Springer, 2020, p 103–133 J.L. González-Velázquez, Strengthening Mechanisms, Mechanical Behavior and Fracture of Engineering Materials, Springer, 2020, p 103–133
5.
Zurück zum Zitat O. Djema, M. Bouabdallah, R. Badji, A. Saadi, N. Kherrouba, and A. Sahli, Isothermal and Non-isothermal Precipitation Kinetics in Al-Mg-Si-(Ag) Alloy, Mater. Chem. Phys., 2020, 240, p 122073. O. Djema, M. Bouabdallah, R. Badji, A. Saadi, N. Kherrouba, and A. Sahli, Isothermal and Non-isothermal Precipitation Kinetics in Al-Mg-Si-(Ag) Alloy, Mater. Chem. Phys., 2020, 240, p 122073.
6.
Zurück zum Zitat L.Z. He, Y.H.Cao1, Y.Z. Zhou, and J.Z. Cui, Effects of Ag Addition on the Microstructures and Properties of Al-Mg-Si-Cu Alloys, Int. J. Miner., Metall. Mater., 2018, 25(1), p 62–72. L.Z. He, Y.H.Cao1, Y.Z. Zhou, and J.Z. Cui, Effects of Ag Addition on the Microstructures and Properties of Al-Mg-Si-Cu Alloys, Int. J. Miner., Metall. Mater., 2018, 25(1), p 62–72.
7.
Zurück zum Zitat R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, and D.R. Lesuer, Effect of Cu and Zr Additions on the Superplastic Behavior of 6061 Aluminum Alloy, Mater. Trans., 2002, 43(10), p 2392–2399 R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, and D.R. Lesuer, Effect of Cu and Zr Additions on the Superplastic Behavior of 6061 Aluminum Alloy, Mater. Trans., 2002, 43(10), p 2392–2399
8.
Zurück zum Zitat J Tian, K.D. Woo, K.J. Lee, and Y. Chen, Effect of Step Quenching and Zr Addition on the Microstructure and Mechanical Properties of Al-Mg-Si Alloy, Korean J. Met. Mater., 2014, 52(2), p 101–111 J Tian, K.D. Woo, K.J. Lee, and Y. Chen, Effect of Step Quenching and Zr Addition on the Microstructure and Mechanical Properties of Al-Mg-Si Alloy, Korean J. Met. Mater., 2014, 52(2), p 101–111
9.
Zurück zum Zitat S. Boczkal, M. Lech-Grega, J. Morgiel, and K. Pieła, Effect of Vanadium Additions on the Structure of Aluminium (Al99. 5) and 6xxx Aluminium Alloys, Light Metals 2014, Springer, 2014, p 261–264 S. Boczkal, M. Lech-Grega, J. Morgiel, and K. Pieła, Effect of Vanadium Additions on the Structure of Aluminium (Al99. 5) and 6xxx Aluminium Alloys, Light Metals 2014, Springer, 2014, p 261–264
10.
Zurück zum Zitat Y. Meng, J. Cui, Z. Zhao, and Y. Zuo, Effect of Vanadium on the Microstructures and Mechanical Properties of an Al-Mg-Si-Cu-Cr-Ti Alloy of 6XXX Series, J. Alloys Compd., 2013, 573, p 102–111 Y. Meng, J. Cui, Z. Zhao, and Y. Zuo, Effect of Vanadium on the Microstructures and Mechanical Properties of an Al-Mg-Si-Cu-Cr-Ti Alloy of 6XXX Series, J. Alloys Compd., 2013, 573, p 102–111
11.
Zurück zum Zitat W. Zhang, Y. Xing, Z.H. Jia, X.F. Yang, Q. Liu, and C.L. Zhu, Effect of Minor Sc and Zr Addition on Microstructure and Properties of Ultra-high Strength Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24(12), p 3866–3871 W. Zhang, Y. Xing, Z.H. Jia, X.F. Yang, Q. Liu, and C.L. Zhu, Effect of Minor Sc and Zr Addition on Microstructure and Properties of Ultra-high Strength Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24(12), p 3866–3871
12.
Zurück zum Zitat D.H. Lee, J.H. Park, and S.W. Nam, Enhancement of Mechanical Properties of Al-Mg-Si Alloys by Means of Manganese Dispersoids, Mater. Sci. Technol., 1999, 15(4), p 450–455 D.H. Lee, J.H. Park, and S.W. Nam, Enhancement of Mechanical Properties of Al-Mg-Si Alloys by Means of Manganese Dispersoids, Mater. Sci. Technol., 1999, 15(4), p 450–455
13.
Zurück zum Zitat R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981 R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981
14.
Zurück zum Zitat A.P. Zhilyaev and T.G. Langdon, Using High-pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979. A.P. Zhilyaev and T.G. Langdon, Using High-pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979.
15.
Zurück zum Zitat B.J. Han, Ultra-fine Grained Fe-32% Ni Alloy Processed by Multi-axial Forging, Adv. Mater. Res., 2010, 97, p. 187–190. B.J. Han, Ultra-fine Grained Fe-32% Ni Alloy Processed by Multi-axial Forging, Adv. Mater. Res., 2010, 97, p. 187–190.
16.
Zurück zum Zitat D.H. Shin, J.J. Park, Y.S. Kim, and K.T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1-2), p 98–103 D.H. Shin, J.J. Park, Y.S. Kim, and K.T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1-2), p 98–103
17.
Zurück zum Zitat N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic Expansion-Extrusion (CEE): A Modified Counterpart of Cyclic Extrusion-Compression (CEC), Mater. Sci. Eng. A, 2011, 528(25-26), p 7537–7540 N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic Expansion-Extrusion (CEE): A Modified Counterpart of Cyclic Extrusion-Compression (CEC), Mater. Sci. Eng. A, 2011, 528(25-26), p 7537–7540
18.
Zurück zum Zitat N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1999, 40(7), p 795–800 N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1999, 40(7), p 795–800
19.
Zurück zum Zitat Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227 Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227
20.
Zurück zum Zitat D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-Fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2017, 708, p 301–310 D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-Fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2017, 708, p 301–310
21.
Zurück zum Zitat M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh, Effects of ARB and Ageing Processes on Mechanical Properties and Microstructure of 6061 Aluminum Alloy, J. Mater. Process.Technol., 2011, 211(6), p 1184–1190 M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh, Effects of ARB and Ageing Processes on Mechanical Properties and Microstructure of 6061 Aluminum Alloy, J. Mater. Process.Technol., 2011, 211(6), p 1184–1190
22.
Zurück zum Zitat M. Raei, M.R. Toroghinejad, and R. Jamaati, Nano/ultrafine Structured AA1100 by ARB Process, Mater. Manuf. Processes, 2011, 26(11), p 1352–1356 M. Raei, M.R. Toroghinejad, and R. Jamaati, Nano/ultrafine Structured AA1100 by ARB Process, Mater. Manuf. Processes, 2011, 26(11), p 1352–1356
23.
Zurück zum Zitat H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino, Elongation Increase in Ultra-fine Grained Al-Fe-Si Alloy Sheets, Acta Mater., 2005, 53(6), p 1737–1749 H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino, Elongation Increase in Ultra-fine Grained Al-Fe-Si Alloy Sheets, Acta Mater., 2005, 53(6), p 1737–1749
24.
Zurück zum Zitat N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing, Scr. Mater., 2002, 47(12), p 893–899 N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing, Scr. Mater., 2002, 47(12), p 893–899
25.
26.
Zurück zum Zitat H. Yu, L. Su, C. Lu, K. Tieu, H. Li, J. Li, A. Godbole, and C. Kong, Enhanced Mechanical Properties of ARB-Processed Aluminum Alloy 6061 Sheets by Subsequent Asymmetric Cryorolling and Ageing, Mater. Sci. Eng. A, 2016, 674, p 256–261 H. Yu, L. Su, C. Lu, K. Tieu, H. Li, J. Li, A. Godbole, and C. Kong, Enhanced Mechanical Properties of ARB-Processed Aluminum Alloy 6061 Sheets by Subsequent Asymmetric Cryorolling and Ageing, Mater. Sci. Eng. A, 2016, 674, p 256–261
27.
Zurück zum Zitat M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh, Production of Nano-grained Structure in 6061 Aluminum Alloy Strip by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2011, 529, p 442–446 M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh, Production of Nano-grained Structure in 6061 Aluminum Alloy Strip by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2011, 529, p 442–446
28.
Zurück zum Zitat “Test Methods for Tension Testing of Metallic Materials”, E8M-04, ASTM International, West Conshohocken, PA, 2004. “Test Methods for Tension Testing of Metallic Materials”, E8M-04, ASTM International, West Conshohocken, PA, 2004.
29.
Zurück zum Zitat W.C. Oliver, G.M. Pharr, and G. Mathews, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583 W.C. Oliver, G.M. Pharr, and G. Mathews, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583
30.
Zurück zum Zitat N.A. Belov, D.G. Eskin, and A.A. Aksenov, Alloys with Transition Metals, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st ed, Elsevier, 2005, p 287–338 N.A. Belov, D.G. Eskin, and A.A. Aksenov, Alloys with Transition Metals, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st ed, Elsevier, 2005, p 287–338
31.
Zurück zum Zitat T. Koizumi and M. Kuroda, Grain Size Effects in Aluminum Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2018, 710, p 300–308 T. Koizumi and M. Kuroda, Grain Size Effects in Aluminum Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2018, 710, p 300–308
32.
Zurück zum Zitat S.S. Satheesh Kumar and T. Raghu, Structural and Mechanical Behaviour of Severe Plastically Deformed High Purity Aluminium Sheets Processed by Constrained Groove Pressing Technique, Mater. Des., 2014, 57, p 114–120 S.S. Satheesh Kumar and T. Raghu, Structural and Mechanical Behaviour of Severe Plastically Deformed High Purity Aluminium Sheets Processed by Constrained Groove Pressing Technique, Mater. Des., 2014, 57, p 114–120
33.
Zurück zum Zitat F. Khakbaz and M. Kazeminezhad, Work Hardening and Mechanical Properties of Severely Deformed AA3003 by Constrained Groove Pressing, J. Manuf. Process, 2012, 14(1), p 20–25 F. Khakbaz and M. Kazeminezhad, Work Hardening and Mechanical Properties of Severely Deformed AA3003 by Constrained Groove Pressing, J. Manuf. Process, 2012, 14(1), p 20–25
34.
Zurück zum Zitat D. Nath, F. Singh, and R. Das, X-ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of CdSe Nanoparticles—A Comparative Study, Mater. Chem. Phys., 2020, 239, p 122021 D. Nath, F. Singh, and R. Das, X-ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of CdSe Nanoparticles—A Comparative Study, Mater. Chem. Phys., 2020, 239, p 122021
35.
Zurück zum Zitat M. Muzyk, Z. Pakieła, and K.J. Kurzydłowski, Generalized Stacking Fault Energies of Aluminum Alloys-Density Functional Theory Calculations, Metals, 2018, 8(10), p 823 M. Muzyk, Z. Pakieła, and K.J. Kurzydłowski, Generalized Stacking Fault Energies of Aluminum Alloys-Density Functional Theory Calculations, Metals, 2018, 8(10), p 823
36.
Zurück zum Zitat C.C. Koch and C. Suryanarayana, Nanocrystalline Materials, Microstructure and Properties of Materials, 2nd ed, J.C.M. LI, World Scientific, 2000, p 360–396 C.C. Koch and C. Suryanarayana, Nanocrystalline Materials, Microstructure and Properties of Materials, 2nd ed, J.C.M. LI, World Scientific, 2000, p 360–396
37.
Zurück zum Zitat M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, Nano/ultrafine Grained AA2024 Alloy Processed by Accumulative Roll Bonding: A Study of Microstructure, Deformation Texture and Mechanical Properties, J. Alloys Compd., 2017, 712, p 517–525 M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, Nano/ultrafine Grained AA2024 Alloy Processed by Accumulative Roll Bonding: A Study of Microstructure, Deformation Texture and Mechanical Properties, J. Alloys Compd., 2017, 712, p 517–525
38.
Zurück zum Zitat S.H. SeyedEbrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and Sh. Zangeneh, Investigation on Microstructure and Mechanical Properties of Al/Al-Zn-Mg-Cu Laminated Composite Fabricated by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2018, 718, p 311–320 S.H. SeyedEbrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and Sh. Zangeneh, Investigation on Microstructure and Mechanical Properties of Al/Al-Zn-Mg-Cu Laminated Composite Fabricated by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2018, 718, p 311–320
39.
Zurück zum Zitat M. R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the Use of Accumulative Roll Bonding Process to Develop Nanostructured Aluminum Alloy 5083, Mater. Sci. Eng. A, 2013, 561, p 145–151 M. R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the Use of Accumulative Roll Bonding Process to Develop Nanostructured Aluminum Alloy 5083, Mater. Sci. Eng. A, 2013, 561, p 145–151
40.
Zurück zum Zitat M. Shaarbaf and M.R. Toroghinejad, Nano-grained Copper Strip Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2008, 473(1-2), p 28–33 M. Shaarbaf and M.R. Toroghinejad, Nano-grained Copper Strip Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2008, 473(1-2), p 28–33
41.
Zurück zum Zitat F.Z. Li, Z.J. Liu, Q. Jin, Z.M. Yu, and E. Liu, Investigation on Work Softening Behavior of Aluminum and Its Alloys with Iron, J. Mater. Eng. Perform., 1997, 6(2), p 172–176 F.Z. Li, Z.J. Liu, Q. Jin, Z.M. Yu, and E. Liu, Investigation on Work Softening Behavior of Aluminum and Its Alloys with Iron, J. Mater. Eng. Perform., 1997, 6(2), p 172–176
42.
Zurück zum Zitat B. Azad, H. M.Semnani, and E. Borhani, Microstructure Evolution and Mechanical Properties of Nano-structured Al-0.2wt.% Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process, Trans. Indian Inst. Met., 2017, 70(10), p. 2725–2732 B. Azad, H. M.Semnani, and E. Borhani, Microstructure Evolution and Mechanical Properties of Nano-structured Al-0.2wt.% Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process, Trans. Indian Inst. Met., 2017, 70(10), p. 2725–2732
43.
Zurück zum Zitat S. N. Naik and S. M. Walley, The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals, J. Mater. Sci., 2020, 55(7), p. 2661–2681 S. N. Naik and S. M. Walley, The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals, J. Mater. Sci., 2020, 55(7), p. 2661–2681
44.
Zurück zum Zitat M. Naseri, M. Reihanian, and E. Borhani, Effect of Strain Path on Microstructure, Deformation Texture and Mechanical Properties of Nano/ultrafine Grained AA1050 Processed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng., A., 2016, 673, p 288–298 M. Naseri, M. Reihanian, and E. Borhani, Effect of Strain Path on Microstructure, Deformation Texture and Mechanical Properties of Nano/ultrafine Grained AA1050 Processed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng., A., 2016, 673, p 288–298
45.
Zurück zum Zitat M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20 M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20
46.
Zurück zum Zitat M. Eizadjou, H. D. Manesh, and K. Janghorban, Microstructure and Mechanical Properties of Ultra-fine Grains (UFGs) Aluminum Strips Produced by ARB Process, J. Alloys Compd., 2009, 474(1-2), p 406–415 M. Eizadjou, H. D. Manesh, and K. Janghorban, Microstructure and Mechanical Properties of Ultra-fine Grains (UFGs) Aluminum Strips Produced by ARB Process, J. Alloys Compd., 2009, 474(1-2), p 406–415
47.
Zurück zum Zitat J. Lai, C. Shi, and X.G. Chen, Effects of V Addition on Recrystallization Resistance of 7150 Aluminum Alloy After Simulative Hot Deformation, Mater. Charact., 2014, 96, p 126–134 J. Lai, C. Shi, and X.G. Chen, Effects of V Addition on Recrystallization Resistance of 7150 Aluminum Alloy After Simulative Hot Deformation, Mater. Charact., 2014, 96, p 126–134
48.
Zurück zum Zitat W. Yuan, Z. Liang, C. Zhang, and L. Wei, Effects of La Addition on the Mechanical Properties and Thermal-Resistant Properties of Al-Mg-Si-Zr Alloys Based on AA 6201, Mater. Des., 2012, 34, p 788–792 W. Yuan, Z. Liang, C. Zhang, and L. Wei, Effects of La Addition on the Mechanical Properties and Thermal-Resistant Properties of Al-Mg-Si-Zr Alloys Based on AA 6201, Mater. Des., 2012, 34, p 788–792
49.
Zurück zum Zitat A. Shokuhfar and O. Nejadseyfi, A Comparison of the Effects of Severe Plastic Deformation and Heat Treatment on the Tensile Properties and Impact Toughness of Aluminum Alloy 6061, Mater. Sci. Eng. A, 2014, 594, p 140–148 A. Shokuhfar and O. Nejadseyfi, A Comparison of the Effects of Severe Plastic Deformation and Heat Treatment on the Tensile Properties and Impact Toughness of Aluminum Alloy 6061, Mater. Sci. Eng. A, 2014, 594, p 140–148
50.
Zurück zum Zitat S. Lu, D. Yin, Y.C. Zhao, C. Liu, M.C. Zhao, Z. Yu, H. Wang, and A. Atrens, Evolution of microstructure and texture for an Al-0.4 Er alloy during accumulative roll bonding, J. Alloys Compd., 2019, 811, p 152005. S. Lu, D. Yin, Y.C. Zhao, C. Liu, M.C. Zhao, Z. Yu, H. Wang, and A. Atrens, Evolution of microstructure and texture for an Al-0.4 Er alloy during accumulative roll bonding, J. Alloys Compd., 2019, 811, p 152005.
51.
Zurück zum Zitat S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloys Compd., 2016, 688, p 44–55. S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloys Compd., 2016, 688, p 44–55.
52.
Zurück zum Zitat M.A. Meyers and K.K. Chawla, Fracture: Microscopic Aspects, Mechanical Behavior of Materials, 2nd ed, Cambridge University Press, 2008, p 466–521 M.A. Meyers and K.K. Chawla, Fracture: Microscopic Aspects, Mechanical Behavior of Materials, 2nd ed, Cambridge University Press, 2008, p 466–521
53.
Zurück zum Zitat H. Alvandi and K. Farmanesh, Microstructural and Mechanical Properties of Nano/ultra-fine Structured 7075 Aluminum Alloy by Accumulative Roll-Bonding Process, Procedia Mater. Sci., 2015, 11, p. 17–23 H. Alvandi and K. Farmanesh, Microstructural and Mechanical Properties of Nano/ultra-fine Structured 7075 Aluminum Alloy by Accumulative Roll-Bonding Process, Procedia Mater. Sci., 2015, 11, p. 17–23
Metadaten
Titel
Effect of an Addition of Vanadium on the Mechanical Properties of the A6061 Alloy Deformed by Accumulative Roll Bonding
verfasst von
Amane Sahli
Mabrouk Buabdallah
Djaffar Saidi
Said Grine
Said Allaoua
Oussama Djema
Bouzid Rahal
Mohamed Khalfa
Khawla Lazazi
Rafik Zekri
Publikationsdatum
21.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05882-2

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.