Skip to main content
Top
Published in: Soft Computing 1/2010

01-01-2010 | Original Paper

An investigation on niching multiple species based on population replacement strategies for multimodal functions optimization

Authors: Minqiang Li, Dan Lin, Jisong Kou

Published in: Soft Computing | Issue 1/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper studies the niching mechanism based on population replacement in the process of evolution to solve the multimodal functions optimization (MMFO) problems. In order to niche multiple species for the MMFO tasks, the overlapping population replacement is surely needed because the offspring population most probably does not inherit all of the genetic information contained in its parental population, and the basic procedure for niching genetic algorithms with overlapping population replacement is presented. Then four niching schemes, the nearest neighbors replacement crowding (NNRC), the species conservation technique (SCT), the HFC-I (implicit hierarchical fair competition), and the CPE (clearing procedure with elitist) are investigated. These niching schemes are characterized with regard to different niching strategies and parameterizations, and the corresponding niching procedures are outlined. Finally, experiments are carried out on a suite of test functions to compare different niching strategies regarding niching efficiency and scalability. Experimental results illustrate the intrinsic difference of the four niching schemes. The NNRC and HFC-I have a mechanism of multiple species coevolution via adapting multiple species to different niches, while the SCT and CPE tend to make use of a mandatory mechanism to conserve species just like the grid searching over the solution space based on species distance or clearing radius. All niching methods are able to deal with complex MMFO problems, while the NNRC and HFC-I show a better performance in terms of niching efficiency and scalability, and are more robust regarding the algorithm parameterization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The niching convergence and equilibrium is measured by population entropy. First, the real-valued variables are discretized into 32 intervals or \( 32 \times 32 \) grids in the 1-d or 2-d definition domain of a function. Second, the population entropy is computed by \( E_{\text{pop}} = - \sum\nolimits_{i = 0}^{K - 1} {\sum\nolimits_{j = 0}^{K - 1} {p_{ij} \log p_{ij} } } , \) where \( p_{ij} \) is the approximate proportion of individuals in the \( i \times j \) grid, \( i,j = 1,2, \ldots ,K,\;K = 31. \) If the relative decrease rate of the population entropy (smoothed for algorithms with fitness proportional selection) per 1000 fitness evaluations was smaller than the threshold (5%), the algorithm is taken as reaching niching convergence and equilibrium.
 
Literature
go back to reference Bäck T, Fogel DB, Michalewicz Z (2000) Evolutionary Computation. Institute of Physics Publishing, Bristol and Philadelphia Bäck T, Fogel DB, Michalewicz Z (2000) Evolutionary Computation. Institute of Physics Publishing, Bristol and Philadelphia
go back to reference Ballester P, Carter J (2003) Real-parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization. In: Erick Cantú-Paz et al (eds) Proceedings of the 2003 genetic and evolutionary computation conference (GECCO 2003), Lecture Notes in Computer Science 2, Springer, Berlin, pp 706–717 Ballester P, Carter J (2003) Real-parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization. In: Erick Cantú-Paz et al (eds) Proceedings of the 2003 genetic and evolutionary computation conference (GECCO 2003), Lecture Notes in Computer Science 2, Springer, Berlin, pp 706–717
go back to reference Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evolut Comput 1(2):10–125CrossRef Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evolut Comput 1(2):10–125CrossRef
go back to reference Beyer H-G (2001) The theory of evolution strategies. Springer, Berlin Beyer H-G (2001) The theory of evolution strategies. Springer, Berlin
go back to reference Cedeño W, Vemuri V (1999) Analysis of speciation and niching in multi-niche crowding genetic algorithms. Theor Comput Sci 229(1–2):177–197MATHCrossRef Cedeño W, Vemuri V (1999) Analysis of speciation and niching in multi-niche crowding genetic algorithms. Theor Comput Sci 229(1–2):177–197MATHCrossRef
go back to reference Cioppa AD, De Stefano C, Marcelli A (2004) On the role of population size and niche radius in fitness sharing. IEEE Trans Evolut Comput 8(6):580–592CrossRef Cioppa AD, De Stefano C, Marcelli A (2004) On the role of population size and niche radius in fitness sharing. IEEE Trans Evolut Comput 8(6):580–592CrossRef
go back to reference De Jong KA (1975) An Analysis of The Behavior of A Class of Genetic Adaptive Systems. Dissertation, University of Michigan, Ann Arbor. (University Microfilms No. 76-9381) De Jong KA (1975) An Analysis of The Behavior of A Class of Genetic Adaptive Systems. Dissertation, University of Michigan, Ann Arbor. (University Microfilms No. 76-9381)
go back to reference Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer, BerlinMATH Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer, BerlinMATH
go back to reference Eshelman LJ, Shaffer JD (1993) Real coded genetic algorithms and interval schemata. In: Whitley LD (ed) Foundations of genetic algorithms II. Morgan Kaufmann, San Mateo, pp 187–202 Eshelman LJ, Shaffer JD (1993) Real coded genetic algorithms and interval schemata. In: Whitley LD (ed) Foundations of genetic algorithms II. Morgan Kaufmann, San Mateo, pp 187–202
go back to reference Gan J, Warwick K (2001) Dynamic niche clustering: a fuzzy variable radius niching technique for multimodal optimization in GAs. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), vol 1. 27–30 May 2001, pp 215–222 Gan J, Warwick K (2001) Dynamic niche clustering: a fuzzy variable radius niching technique for multimodal optimization in GAs. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), vol 1. 27–30 May 2001, pp 215–222
go back to reference Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, New YorkMATH Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, New YorkMATH
go back to reference Goldberg DE, Richardson JJ (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the second international conference on genetic algorithms (ICGA 2), pp 41–49 Goldberg DE, Richardson JJ (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the second international conference on genetic algorithms (ICGA 2), pp 41–49
go back to reference Goldberg DE, Deb K, Korb B (1990) Messy genetic algorithms revisited: studies in mixed size and scale. Complex Syst 4(4):415–444MATH Goldberg DE, Deb K, Korb B (1990) Messy genetic algorithms revisited: studies in mixed size and scale. Complex Syst 4(4):415–444MATH
go back to reference Goldberg DE, Deb K, Horn J (1992) Massive multimodality, deception, and genetic algorithms. Parallel Problem Solving from Nature, 2, pp 37–46. (Also IlliGAL Report No. 92007) Goldberg DE, Deb K, Horn J (1992) Massive multimodality, deception, and genetic algorithms. Parallel Problem Solving from Nature, 2, pp 37–46. (Also IlliGAL Report No. 92007)
go back to reference Gudla PK, Ganguli R (2005) An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems. Applied Mathematics and Computation 167(2):1457–1474MATHCrossRefMathSciNet Gudla PK, Ganguli R (2005) An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems. Applied Mathematics and Computation 167(2):1457–1474MATHCrossRefMathSciNet
go back to reference Harik GR (1995) Finding multimodal solutions using restricted tournament selection. In: Proceedings of the sixth international conference on genetic algorithms (ICGA 6), pp 24–31 (Also IlliGAL Report No. 94002) Harik GR (1995) Finding multimodal solutions using restricted tournament selection. In: Proceedings of the sixth international conference on genetic algorithms (ICGA 6), pp 24–31 (Also IlliGAL Report No. 94002)
go back to reference Herrera F, Lozano M, Sànchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int J Intell Syst 18(3):309–338MATHCrossRef Herrera F, Lozano M, Sànchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int J Intell Syst 18(3):309–338MATHCrossRef
go back to reference Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 2nd edn. MIT Press, Cambridge Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 2nd edn. MIT Press, Cambridge
go back to reference Horn J (1997) The Nature of niching: genetic algorithms and the evolution of optimal, cooperative populations. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL61801. (Also IlliGAL Report No. 97008) Horn J (1997) The Nature of niching: genetic algorithms and the evolution of optimal, cooperative populations. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL61801. (Also IlliGAL Report No. 97008)
go back to reference Hu J, Goodman E (2004) Robust and efficient genetic algorithms with hierarchical niching and sustainable evolutionary computation model. In: Deb K et al (eds) Proceedings of genetic and evolutionary computation conference (GECCO 2004), Seattle, Washington, USA, June 2004; Part 1, Lecture Notes in Computer Science, vol 3,102, Springer, Berlin, pp 1220–1232 Hu J, Goodman E (2004) Robust and efficient genetic algorithms with hierarchical niching and sustainable evolutionary computation model. In: Deb K et al (eds) Proceedings of genetic and evolutionary computation conference (GECCO 2004), Seattle, Washington, USA, June 2004; Part 1, Lecture Notes in Computer Science, vol 3,102, Springer, Berlin, pp 1220–1232
go back to reference Hu J, Goodman ED, Seo K, Fan Z, Rosenberg R (2005) The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms. Evolut Comput 13(2):241–277CrossRef Hu J, Goodman ED, Seo K, Fan Z, Rosenberg R (2005) The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms. Evolut Comput 13(2):241–277CrossRef
go back to reference Iwamatsu M (2006) Multi-species particle swarm optimizer for multimodal function optimization. IEICE Trans Inf Syst E89-D(3):1181–1187CrossRef Iwamatsu M (2006) Multi-species particle swarm optimizer for multimodal function optimization. IEICE Trans Inf Syst E89-D(3):1181–1187CrossRef
go back to reference Jelasity M, Ortigosa PM, Garcia I (2001) UEGO, an abstract clustering technique for multimodal global optimization. J Heuristics 7(3):215–233MATHCrossRefMathSciNet Jelasity M, Ortigosa PM, Garcia I (2001) UEGO, an abstract clustering technique for multimodal global optimization. J Heuristics 7(3):215–233MATHCrossRefMathSciNet
go back to reference Lee C-G, Cho D-H, Jung H-K (1999) Niching genetic algorithm with restricted competition selection for multimodal function optimization. IEEE Transactions on Magnetics 35(3), Part 1, pp 1722–1725 Lee C-G, Cho D-H, Jung H-K (1999) Niching genetic algorithm with restricted competition selection for multimodal function optimization. IEEE Transactions on Magnetics 35(3), Part 1, pp 1722–1725
go back to reference Li M, Kou J (2005) A novel type of niching methods based on steady-state genetic algorithm. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation: first international conference (ICNC 2005), lecture notes in computer science, vol 3612/2005, Springer, Berlin, pp 37–47 Li M, Kou J (2005) A novel type of niching methods based on steady-state genetic algorithm. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation: first international conference (ICNC 2005), lecture notes in computer science, vol 3612/2005, Springer, Berlin, pp 37–47
go back to reference Li M, Kou J (2008) Crowding with nearest neighbors replacement for multiple species niching and building blocks preservation in binary multimodal functions optimization. J Heuristics 14(3):243–270MATHCrossRef Li M, Kou J (2008) Crowding with nearest neighbors replacement for multiple species niching and building blocks preservation in binary multimodal functions optimization. J Heuristics 14(3):243–270MATHCrossRef
go back to reference Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evolut Comput 10(3):207–234CrossRef Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evolut Comput 10(3):207–234CrossRef
go back to reference Lin C-Y, Yang Y-J (1998) Cluster identification techniques in genetic algorithms for multimodal optimization. Comput Aided Civil Infrastruct Eng 13(1):53–62(10) Lin C-Y, Yang Y-J (1998) Cluster identification techniques in genetic algorithms for multimodal optimization. Comput Aided Civil Infrastruct Eng 13(1):53–62(10)
go back to reference Mahfoud SW (1995) Niching methods for genetic algorithms. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL61801 (Also IlliGAL Report No. 95001) Mahfoud SW (1995) Niching methods for genetic algorithms. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL61801 (Also IlliGAL Report No. 95001)
go back to reference Pelikan M, Goldberg DE (2000) Genetic algorithms, clustering, and the breaking of symmetry. In: Proceedings of parallel problem solving from Nature VI, Springer, Berlin, pp 385–394 (Also IlliGAL Report No. 2000013) Pelikan M, Goldberg DE (2000) Genetic algorithms, clustering, and the breaking of symmetry. In: Proceedings of parallel problem solving from Nature VI, Springer, Berlin, pp 385–394 (Also IlliGAL Report No. 2000013)
go back to reference Peña JM, Lozano JA, Larrañaga P (2005) Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks. Evolut Comput 13(1):43–66CrossRef Peña JM, Lozano JA, Larrañaga P (2005) Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks. Evolut Comput 13(1):43–66CrossRef
go back to reference Pétrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE international conference evolutionary computation, Nagoya, Japan, pp 798–803 Pétrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE international conference evolutionary computation, Nagoya, Japan, pp 798–803
go back to reference Reeves CR, Rowe JE (2003) Genetic algorithms: principles and perspectives—a guide to GA theory. Kluwer Academic Publishers, Boston Reeves CR, Rowe JE (2003) Genetic algorithms: principles and perspectives—a guide to GA theory. Kluwer Academic Publishers, Boston
go back to reference Sareni B, Krähenbühl L (1998) Fitness sharing and niching methods revisited. IEEE Trans Evolut Comput 2(3):97–106CrossRef Sareni B, Krähenbühl L (1998) Fitness sharing and niching methods revisited. IEEE Trans Evolut Comput 2(3):97–106CrossRef
go back to reference Siarry P, Pétrowski A, Bessaou M (2000) Island model cooperating with speciation for multimodal optimization. In: Schoenauer M et al (eds) Proceedings of 6th international conference on parallel problem solving from nature (PPSN-VI}), parallel problem solving from nature, Paris, France. Springer, Berlin, pp 437–446 Siarry P, Pétrowski A, Bessaou M (2000) Island model cooperating with speciation for multimodal optimization. In: Schoenauer M et al (eds) Proceedings of 6th international conference on parallel problem solving from nature (PPSN-VI}), parallel problem solving from nature, Paris, France. Springer, Berlin, pp 437–446
go back to reference Siarry P, Pétrowski A, Bessaou M (2002) A multipopulation genetic algorithm aimed at multimodal optimization. Adv Eng Softw 33(4):207–213MATHCrossRef Siarry P, Pétrowski A, Bessaou M (2002) A multipopulation genetic algorithm aimed at multimodal optimization. Adv Eng Softw 33(4):207–213MATHCrossRef
go back to reference Van Hoyweghen C, Naudts B, Goldberg DE (2002) Spin-flip symmetry and synchronization. Evolut Comput 10(4):317–344CrossRef Van Hoyweghen C, Naudts B, Goldberg DE (2002) Spin-flip symmetry and synchronization. Evolut Comput 10(4):317–344CrossRef
go back to reference Yin X, Germany N (1993) A fast algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Albrecht RF, Reeves CR, Steel NC (eds) Proceedings of the international conference on artificial neural nets and genetic algorithms. Springer, Berlin, pp 450–457 Yin X, Germany N (1993) A fast algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Albrecht RF, Reeves CR, Steel NC (eds) Proceedings of the international conference on artificial neural nets and genetic algorithms. Springer, Berlin, pp 450–457
go back to reference Yuan B, Gallagher M (2003) On building a principled framework for evaluating and testing evolutionary algorithms: a continuous landscape generator. In: Sarkar R et al (ed) Proceedings of the 2003 congress on evolutionary computation (CEC 2003), vol 1, 8–12 Dec 2003, pp 451–458 Yuan B, Gallagher M (2003) On building a principled framework for evaluating and testing evolutionary algorithms: a continuous landscape generator. In: Sarkar R et al (ed) Proceedings of the 2003 congress on evolutionary computation (CEC 2003), vol 1, 8–12 Dec 2003, pp 451–458
Metadata
Title
An investigation on niching multiple species based on population replacement strategies for multimodal functions optimization
Authors
Minqiang Li
Dan Lin
Jisong Kou
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Soft Computing / Issue 1/2010
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-008-0389-6

Other articles of this Issue 1/2010

Soft Computing 1/2010 Go to the issue

Premium Partner