Skip to main content
Top
Published in: Journal of Computational Electronics 5/2021

04-09-2021

An n-ZnO/i-MoS2/p-Si heterojunction solar cell with an enhanced photoswitching response

Authors: R. Parasuraman, K. Rathnakannan

Published in: Journal of Computational Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An ZnO nanostructure and the MoS2 switching mechanism in a heterostructure are applied in this work to improve the photoconversion efficiency of a solar cell. The carrier transport of MoS2 at the MoS2/Si interface generates more electron–hole pairs. The photoswitching performance of the MoS2 active layer with a thickness of 30 nm is increased by the effective light trapping of the ZnO nanostructure, achieving a short-circuit current density of 40.99 mA cm−2 based on a surface recombination velocity of 0.2165 × 105 m s−1 for electrons and 0.1901 × 105 m s−1 for holes. The electron and hole mobility are found to be 100 cm2 V−1 s−1 and 150 cm2 V−1 s−1, respectively. The Joule and Shockley–Read–Hall (SRH) heating rates are calculating using the steady-state method, yielding values on the magnitude of 1013 and 1012 W m−3, respectively. The thermal stability is improved because of the photoswitching characteristics of the MoS2 with electron and hole lifetimes of 0.1 ns and the reduced SRH and Joule heating rates. Such combined use of both ZnO and MoS2 nanostructures results in a photoconversion efficiency of 27.73%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lipika Mandal, S., Askari, S.A., Kumar, M., Imam, M.: Analysis of ZnO/Si Heterojunction Solar Cell with Interface Defect. Springer, Berlin (2019) Lipika Mandal, S., Askari, S.A., Kumar, M., Imam, M.: Analysis of ZnO/Si Heterojunction Solar Cell with Interface Defect. Springer, Berlin (2019)
2.
go back to reference Hussain, B., Aslam, A., Khan, T.M., Creighton, M., Zohuri, B.: Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)CrossRef Hussain, B., Aslam, A., Khan, T.M., Creighton, M., Zohuri, B.: Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)CrossRef
3.
go back to reference Chen, Li., Chen, X., Liu, Y., Zhao, Y., Zhang, X.: Research on ZnO/Si heterojunction solar cells. J. Semicond. 38, 5 (2016) Chen, Li., Chen, X., Liu, Y., Zhao, Y., Zhang, X.: Research on ZnO/Si heterojunction solar cells. J. Semicond. 38, 5 (2016)
4.
go back to reference Bouarissa, A., Gueddim, A., Bouarissa, N., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization. Mater. Sci. Eng. B 263, 114816 (2020)CrossRef Bouarissa, A., Gueddim, A., Bouarissa, N., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization. Mater. Sci. Eng. B 263, 114816 (2020)CrossRef
5.
go back to reference Pietruszka, R., Witkowski, B.S., Gieraltowska, S., et al.: New efficient solar cell structures based on zinc oxide nanorods. Sol Energy Mater. Sol. Cell. 143, 99 (2015)CrossRef Pietruszka, R., Witkowski, B.S., Gieraltowska, S., et al.: New efficient solar cell structures based on zinc oxide nanorods. Sol Energy Mater. Sol. Cell. 143, 99 (2015)CrossRef
6.
go back to reference Ziani, N., Belkaid, M.S.: Computer modeling zinc oxide/silicon heterojunction solar cells. J. Nano-electron. Phys. 10(6), 06002 (2018)CrossRef Ziani, N., Belkaid, M.S.: Computer modeling zinc oxide/silicon heterojunction solar cells. J. Nano-electron. Phys. 10(6), 06002 (2018)CrossRef
7.
go back to reference Chala, S., Sengouga, N., Yakuphanoglu, F., Rahmane, S., Bdirina, M., Karteri, I.: Extraction of ZnO thin-film parameters for modeling a ZnO/Si solar cell. Energy 164, 871–880 (2018)CrossRef Chala, S., Sengouga, N., Yakuphanoglu, F., Rahmane, S., Bdirina, M., Karteri, I.: Extraction of ZnO thin-film parameters for modeling a ZnO/Si solar cell. Energy 164, 871–880 (2018)CrossRef
8.
go back to reference Chala, S., Sengouga, N., Yakuphanoglu, F.: Modeling the effect of defects on the performance of an n-CdO/p-Si solar cell. Vacuum 120, 81–88 (2015)CrossRef Chala, S., Sengouga, N., Yakuphanoglu, F.: Modeling the effect of defects on the performance of an n-CdO/p-Si solar cell. Vacuum 120, 81–88 (2015)CrossRef
9.
go back to reference Yen, T., Li, M., Chokshi, N., DeLeon, R.L., Kim, J., Tompa, G., Anderson, W.A.: Current transport in ZnO/Si heterojunctions for low-cost solar cells. In: 4th Photovo/Taic Energy Conversion Conference, pp. 1653–1656 (2006) Yen, T., Li, M., Chokshi, N., DeLeon, R.L., Kim, J., Tompa, G., Anderson, W.A.: Current transport in ZnO/Si heterojunctions for low-cost solar cells. In: 4th Photovo/Taic Energy Conversion Conference, pp. 1653–1656 (2006)
10.
go back to reference Lee, J., Choi, Y., Choi, W., Yeom, H., Yoon, Y., Kim, J., Im, S.: Characterization of films and interfaces in n-ZnO/p-Si photodiodes. Thin Solid Films 420, 112–116 (2002)CrossRef Lee, J., Choi, Y., Choi, W., Yeom, H., Yoon, Y., Kim, J., Im, S.: Characterization of films and interfaces in n-ZnO/p-Si photodiodes. Thin Solid Films 420, 112–116 (2002)CrossRef
11.
go back to reference Hussain, B.: Improvement in the open-circuit voltage of n‐ZnO/p‐Si solar cell by using amorphous‐ZnO at the interface pro. Photovolt. Res. Appl., Pp. 1–9 (2017) Hussain, B.: Improvement in the open-circuit voltage of n‐ZnO/p‐Si solar cell by using amorphous‐ZnO at the interface pro. Photovolt. Res. Appl., Pp. 1–9 (2017)
12.
go back to reference Fathy, A.E., Ghahremani, A., Fathy, A.E.: A three- dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015)CrossRef Fathy, A.E., Ghahremani, A., Fathy, A.E.: A three- dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015)CrossRef
13.
go back to reference Bednar, N., Severino, N., Adamovic, N.: Optical simulation of light management in CIGS thin-film solar cells using finite element method. Appl. Sci. 5, 1735–1744 (2015)CrossRef Bednar, N., Severino, N., Adamovic, N.: Optical simulation of light management in CIGS thin-film solar cells using finite element method. Appl. Sci. 5, 1735–1744 (2015)CrossRef
14.
go back to reference Behura, S., Chang, K.C., Wen, Y., Debbarma, R., Nguyen, P., Che, S., Deng, S., Seacrist, M.R., Berry, V.: WS2/silicon heterojunction solar cells. IEEE Nanotechnol. Mag. 17, 1932–4510 (2017) Behura, S., Chang, K.C., Wen, Y., Debbarma, R., Nguyen, P., Che, S., Deng, S., Seacrist, M.R., Berry, V.: WS2/silicon heterojunction solar cells. IEEE Nanotechnol. Mag. 17, 1932–4510 (2017)
15.
go back to reference Banerjee, S., Ojha, Y.K., Vikas, K., et al.: High efficient CIGS based thin-film solar cell performance optimization using PC1D. IRJET 03, 385 (2016) Banerjee, S., Ojha, Y.K., Vikas, K., et al.: High efficient CIGS based thin-film solar cell performance optimization using PC1D. IRJET 03, 385 (2016)
16.
go back to reference Chen, H.Y., Lu, H.L., Sun, L., Ren, Q.H., Zhang, H., Ji, X.M., Liu, W.J., Ding, S.J., Yang, X.F., Zhang, D.W.: Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer. Sci. Rep. 6, 38486 (2016)CrossRef Chen, H.Y., Lu, H.L., Sun, L., Ren, Q.H., Zhang, H., Ji, X.M., Liu, W.J., Ding, S.J., Yang, X.F., Zhang, D.W.: Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer. Sci. Rep. 6, 38486 (2016)CrossRef
17.
go back to reference Wang, A., Xuan, Y.: A detailed study on loss processes in solar cells. Energy 144, 490–500 (2018)CrossRef Wang, A., Xuan, Y.: A detailed study on loss processes in solar cells. Energy 144, 490–500 (2018)CrossRef
18.
go back to reference Zandi, S., Saxena, P., Gorji, N.E.: Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020)CrossRef Zandi, S., Saxena, P., Gorji, N.E.: Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020)CrossRef
19.
go back to reference Kang, A.K., Zandi, M.H., Gorji, N.E.: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D Opt. Quant. Electron. 51(4), 91 (2019)CrossRef Kang, A.K., Zandi, M.H., Gorji, N.E.: Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D Opt. Quant. Electron. 51(4), 91 (2019)CrossRef
20.
go back to reference Haddout, A., Raidou, A., Fahoume, M.: A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125(124), 1–16 (2019) Haddout, A., Raidou, A., Fahoume, M.: A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125(124), 1–16 (2019)
21.
go back to reference Tributsch, H.: Electrochemical solar cells based on layer-type transition metal compounds: performance of electrode material. Sol. Energy Mater., pp. 257–269 (1979) Tributsch, H.: Electrochemical solar cells based on layer-type transition metal compounds: performance of electrode material. Sol. Energy Mater., pp. 257–269 (1979)
22.
go back to reference Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRef Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRef
23.
go back to reference Lin, S., Li, X., Wang, P., Xu, Z., Zhang, S., Zhong, H., Wu, Z., Xu, W., Chen, H.: Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Sci. Rep. 5 (2015) Lin, S., Li, X., Wang, P., Xu, Z., Zhang, S., Zhong, H., Wu, Z., Xu, W., Chen, H.: Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Sci. Rep. 5 (2015)
24.
go back to reference Wang, W., Panin, G.N., Fu, X., Zhang, L., Ilanchezhiyan, P., Pelenovich, V.O., Fu, D., Kang, T.W.: MoS2 memristor with photoresistive switching. Sci. Rep. 63, 1224 (2016) Wang, W., Panin, G.N., Fu, X., Zhang, L., Ilanchezhiyan, P., Pelenovich, V.O., Fu, D., Kang, T.W.: MoS2 memristor with photoresistive switching. Sci. Rep. 63, 1224 (2016)
25.
go back to reference Singh, E., Kim, K.S., Yeom, G.Y., Nalwa, H.S.: Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017)CrossRef Singh, E., Kim, K.S., Yeom, G.Y., Nalwa, H.S.: Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017)CrossRef
26.
go back to reference Zhao, Y., Ouyang, G.: Thickness-dependent photoelectric properties of MoS2/Si heterostructure solar cells. Sci. Rep. 9, 17381 (2019)CrossRef Zhao, Y., Ouyang, G.: Thickness-dependent photoelectric properties of MoS2/Si heterostructure solar cells. Sci. Rep. 9, 17381 (2019)CrossRef
27.
go back to reference Das, S., Chen, H.Y., Penumatcha, A.V., Appenzeller, J.: High-performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)CrossRef Das, S., Chen, H.Y., Penumatcha, A.V., Appenzeller, J.: High-performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)CrossRef
28.
go back to reference Li, S.-L., et al.: Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546–3552 (2013)CrossRef Li, S.-L., et al.: Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546–3552 (2013)CrossRef
29.
go back to reference Granzner, R., Polyakov, V.M., Schippel, C., Schwierz, F.: Empirical model for the effective electron mobility in silicon nanowires. IEEE Trans. Electron Dev. 61, 3601–3607 (2014)CrossRef Granzner, R., Polyakov, V.M., Schippel, C., Schwierz, F.: Empirical model for the effective electron mobility in silicon nanowires. IEEE Trans. Electron Dev. 61, 3601–3607 (2014)CrossRef
30.
go back to reference He, Y., Ouyang, G.: Modulation of the carrier mobility enhancement in Si/Ge core-shell nanowires under different interface confinements. Phys. Chem. 20, 3888–3894 (2018) He, Y., Ouyang, G.: Modulation of the carrier mobility enhancement in Si/Ge core-shell nanowires under different interface confinements. Phys. Chem. 20, 3888–3894 (2018)
31.
go back to reference Toprasertpong, K., Inoue, T., Delamarre, A., Watanabe, K.: Photocurrent collection mechanism and role of carrier distribution in pin quantum well solar cells. IEEE 978–1–5090–2724–8/16 (2016) Toprasertpong, K., Inoue, T., Delamarre, A., Watanabe, K.: Photocurrent collection mechanism and role of carrier distribution in pin quantum well solar cells. IEEE 978–1–5090–2724–8/16 (2016)
32.
go back to reference Hao, L.Z., Gao, W., Liu, Y.J., Han, Z.D., Xue, Q.Z., Guo, W.Y., Zhu, J., Li, Y.R.: High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale 7, 8304–8308 (2015)CrossRef Hao, L.Z., Gao, W., Liu, Y.J., Han, Z.D., Xue, Q.Z., Guo, W.Y., Zhu, J., Li, Y.R.: High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale 7, 8304–8308 (2015)CrossRef
33.
go back to reference Rehman, A., Khan, M.F., Shehzad, M.A., Hussain, S., Bhopal, M.F., Lee, S.H., Eom, J., Seo, Y., Jung, J., Lee, S.H.: n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces 8(43), 29383–29390 (2016)CrossRef Rehman, A., Khan, M.F., Shehzad, M.A., Hussain, S., Bhopal, M.F., Lee, S.H., Eom, J., Seo, Y., Jung, J., Lee, S.H.: n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces 8(43), 29383–29390 (2016)CrossRef
34.
go back to reference Chen, M., et al.: ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 7, 2449–2453 (2011) Chen, M., et al.: ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 7, 2449–2453 (2011)
35.
go back to reference Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef
36.
go back to reference Singh, E., Seok, K., Geun, K., Yeom, Y., Nalwa, H.S.: Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017)CrossRef Singh, E., Seok, K., Geun, K., Yeom, Y., Nalwa, H.S.: Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017)CrossRef
Metadata
Title
An n-ZnO/i-MoS2/p-Si heterojunction solar cell with an enhanced photoswitching response
Authors
R. Parasuraman
K. Rathnakannan
Publication date
04-09-2021
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01769-6

Other articles of this Issue 5/2021

Journal of Computational Electronics 5/2021 Go to the issue