Skip to main content
Top
Published in: Telecommunication Systems 2/2021

24-06-2021

An SDN-based framework for QoS routing in internet of underwater things

Authors: Reza Mohammadi, Amin Nazari, Mohammad Nassiri, Mauro Conti

Published in: Telecommunication Systems | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the Underwater Internet of Things (IoUT) has become a popular technology for exploring the underwater environment. IoUT enables administrators to explore and monitor underwater environmental phenomena from anywhere in the world where there is Internet access. Due to the harsh underwater environment, the reliability of communication between sensor nodes deteriorates, causing certain performance issues such as higher packet loss rate and long end-to-end delay. Therefore, it is essential to manage the communications between the sensors to address these problems in order to improve the QoS. Software-defined networking (SDN) is one of the most promising architectures for providing efficient network management by decoupling the data plane from the control plane of the network. This paper proposes a new QoS routing technique for SDN-based IoUT aiming at improving QoS by establishing reliable paths between sensor nodes. To do this, the controller gathers the 3D coordinates of each underwater sensor in order to compute the distance between the nodes. Then, it estimates the reliability of each link by using underwater acoustic equations. Finally, it calculates the most reliable path with minimum delay and installs the path on the nodes located along it. The experimental results show that our mechanism significantly outperforms other non-SDN approaches in terms of several performance measures ranging from packet loss ratio and end-to-end delay to energy consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luo, H., Wu, K., Ruby, R., Liang, Y., Guo, Z., & Ni, L. M. (2018). Software-defined architectures and technologies for underwater wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials, 20(4), 2855–2888.CrossRef Luo, H., Wu, K., Ruby, R., Liang, Y., Guo, Z., & Ni, L. M. (2018). Software-defined architectures and technologies for underwater wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials, 20(4), 2855–2888.CrossRef
2.
go back to reference Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad hoc Networks, 3(3), 257–279.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad hoc Networks, 3(3), 257–279.CrossRef
3.
go back to reference Mohammadi, R., & Javidan, R. (2016). A comparative study on mac protocols of an underwater surveillance system from qos perspective. Journal of Telecommunication Electronic and Computer Engineering (JTEC), 8(1), 45–52. Mohammadi, R., & Javidan, R. (2016). A comparative study on mac protocols of an underwater surveillance system from qos perspective. Journal of Telecommunication Electronic and Computer Engineering (JTEC), 8(1), 45–52.
4.
go back to reference Manjula, R., & Manvi, S. S. (2011). Issues in underwater acoustic sensor networks. International Journal of Computer and Electrical Engineering, 3(1), 101. Manjula, R., & Manvi, S. S. (2011). Issues in underwater acoustic sensor networks. International Journal of Computer and Electrical Engineering, 3(1), 101.
5.
go back to reference Stojanovic, M. (1999). Underwater acoustic communication. Wiley Encyclopedia of Electrical and Electronics Engineering, 19, 1–12. Stojanovic, M. (1999). Underwater acoustic communication. Wiley Encyclopedia of Electrical and Electronics Engineering, 19, 1–12.
6.
go back to reference Etter, P. C. (2014). Underwater acoustic modeling: principles, techniques and applications. Baco Raton: CRC Press. Etter, P. C. (2014). Underwater acoustic modeling: principles, techniques and applications. Baco Raton: CRC Press.
7.
go back to reference Keshtgary, M., Mohammadi, R., Mahmoudi, M., & Mansouri, M. R. (2012). Energy consumption estimation in cluster based underwater wireless sensor networks using m/m/1 queuing model. International Journal of Computer Applications, 43(24), 6–10. Keshtgary, M., Mohammadi, R., Mahmoudi, M., & Mansouri, M. R. (2012). Energy consumption estimation in cluster based underwater wireless sensor networks using m/m/1 queuing model. International Journal of Computer Applications, 43(24), 6–10.
8.
go back to reference Stojanovic, M. (2003) “Acoustic (underwater) communications,” Wiley Encyclopedia of Telecommunications. Stojanovic, M. (2003) “Acoustic (underwater) communications,” Wiley Encyclopedia of Telecommunications.
9.
go back to reference Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing.
10.
go back to reference Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.CrossRef Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.CrossRef
11.
go back to reference Kao, C.-C., Lin, Y.-S., Wu, G.-D., & Huang, C.-J. (2017). A comprehensive study on the internet of underwater things: applications, challenges, and channel models. Sensors, 17(7), 1477.CrossRef Kao, C.-C., Lin, Y.-S., Wu, G.-D., & Huang, C.-J. (2017). A comprehensive study on the internet of underwater things: applications, challenges, and channel models. Sensors, 17(7), 1477.CrossRef
12.
go back to reference Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35(6), 1879–1890.CrossRef Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35(6), 1879–1890.CrossRef
13.
go back to reference Shin, M.-K., Nam, K.-H., & Kim, H.-J. (2012) Software-defined networking (sdn): A reference architecture and open apis. In: 2012 International Conference on ICT Convergence (ICTC), pp. 360–361, IEEE. Shin, M.-K., Nam, K.-H., & Kim, H.-J. (2012) Software-defined networking (sdn): A reference architecture and open apis. In: 2012 International Conference on ICT Convergence (ICTC), pp. 360–361, IEEE.
14.
go back to reference Keshari, S.K., Kansal, V., & Kumar, S. (2020) A systematic review of quality of services (qos) in software defined networking (sdn).Wireless Personal Communications, pp. 1–22. Keshari, S.K., Kansal, V., & Kumar, S. (2020) A systematic review of quality of services (qos) in software defined networking (sdn).Wireless Personal Communications, pp. 1–22.
15.
go back to reference Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef
16.
go back to reference Demirors, E.,Shi, J.,Duong, A., Dave, N., Guida, R., Herrera, B.,Pop, F., Chen, G., Casella, C. & Tadayon, S. et al. (2018) The seanet project: Toward a programmable internet of underwater things. In 2018 Fourth Underwater Communications and Networking Conference (UComms), pp. 1–5, IEEE Demirors, E.,Shi, J.,Duong, A., Dave, N., Guida, R., Herrera, B.,Pop, F., Chen, G., Casella, C. & Tadayon, S. et al. (2018) The seanet project: Toward a programmable internet of underwater things. In 2018 Fourth Underwater Communications and Networking Conference (UComms), pp. 1–5, IEEE
17.
go back to reference Akyildiz, I. F., Wang, P., & Lin, S.-C. (2016). Softwater: Software-defined networking for next-generation underwater communication systems. Ad Hoc Networks, 46, 1–11.CrossRef Akyildiz, I. F., Wang, P., & Lin, S.-C. (2016). Softwater: Software-defined networking for next-generation underwater communication systems. Ad Hoc Networks, 46, 1–11.CrossRef
18.
go back to reference Sharma, C. (2016) Correcting the iot history Sharma, C. (2016) Correcting the iot history
19.
go back to reference Meddeb, A. (2016). Internet of things standards: who stands out from the crowd? IEEE Communications Magazine, 54(7), 40–47.CrossRef Meddeb, A. (2016). Internet of things standards: who stands out from the crowd? IEEE Communications Magazine, 54(7), 40–47.CrossRef
20.
go back to reference Berlian, M.H., Sahputra, T.E.R., Ardi, B.J.W., Dzatmika, L.W., Besari, A.R.A., Sudibyo, R.W., & Sukaridhoto, S. (2016) “Design and implementation of smart environment monitoring and analytics in real-time system framework based on internet of underwater things and big data. In: 2016 International Electronics Symposium (IES), pp. 403–408, IEEE. Berlian, M.H., Sahputra, T.E.R., Ardi, B.J.W., Dzatmika, L.W., Besari, A.R.A., Sudibyo, R.W., & Sukaridhoto, S. (2016) “Design and implementation of smart environment monitoring and analytics in real-time system framework based on internet of underwater things and big data. In: 2016 International Electronics Symposium (IES), pp. 403–408, IEEE.
21.
go back to reference Zhou, Z., Yao, B., Xing, R., Shu, L., & Bu, S. (2015). E-carp: An energy efficient routing protocol for uwsns in the internet of underwater things. IEEE Sensors Journal, 16(11), 4072–4082.CrossRef Zhou, Z., Yao, B., Xing, R., Shu, L., & Bu, S. (2015). E-carp: An energy efficient routing protocol for uwsns in the internet of underwater things. IEEE Sensors Journal, 16(11), 4072–4082.CrossRef
22.
go back to reference Nayyar, A., Ba, C.H., Duc, N.P.C., & Binh, H.D. (2018) Smart-iout 1.0: A smart aquatic monitoring network based on internet of underwater things (iout). In International Conference on Industrial Networks and Intelligent Systems, pp. 191–207. Springer, Berlin. Nayyar, A., Ba, C.H., Duc, N.P.C., & Binh, H.D. (2018) Smart-iout 1.0: A smart aquatic monitoring network based on internet of underwater things (iout). In International Conference on Industrial Networks and Intelligent Systems, pp. 191–207. Springer, Berlin.
23.
go back to reference Urunov, K., Shin, S.-Y., Namgung, J.-I., & Park, S.-H. (2018) High-level architectural design of management system for the internet of underwater things. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 326–331, IEEE. Urunov, K., Shin, S.-Y., Namgung, J.-I., & Park, S.-H. (2018) High-level architectural design of management system for the internet of underwater things. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 326–331, IEEE.
24.
go back to reference Kao, C.-C., Lin, Y.-S.,Wu, G.-D. , & Huang, C.-J. (2017) A study of applications, challenges, and channel models on the internet of underwater things. In: 2017 International Conference on Applied System Innovation (ICASI), pp. 1375–1378, IEEE. Kao, C.-C., Lin, Y.-S.,Wu, G.-D. , & Huang, C.-J. (2017) A study of applications, challenges, and channel models on the internet of underwater things. In: 2017 International Conference on Applied System Innovation (ICASI), pp. 1375–1378, IEEE.
25.
go back to reference Lima, F. H., Vieira, L. F., Vieira, M. A., Vieira, A. B., & Nacif, J. A. M. (2019). Water ping: Icmp for the internet of underwater things. Computer Networks, 152, 54–63.CrossRef Lima, F. H., Vieira, L. F., Vieira, M. A., Vieira, A. B., & Nacif, J. A. M. (2019). Water ping: Icmp for the internet of underwater things. Computer Networks, 152, 54–63.CrossRef
26.
go back to reference Xu, M., & Liu, L. (2016) Sender-receiver role-based energy-aware scheduling for internet of underwater things. IEEE Transactions on Emerging Topics in Computing Xu, M., & Liu, L. (2016) Sender-receiver role-based energy-aware scheduling for internet of underwater things. IEEE Transactions on Emerging Topics in Computing
27.
go back to reference Luo, Y., Pu, L., Zuba, M., Peng, Z., & Cui, J.-H. (2014). Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing, 2(2), 198–211.CrossRef Luo, Y., Pu, L., Zuba, M., Peng, Z., & Cui, J.-H. (2014). Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing, 2(2), 198–211.CrossRef
28.
go back to reference Jones, E. (2007) The application of software radio techniques to underwater acoustic communications. In OCEANS 2007-Europe, pp. 1–6, IEEE. Jones, E. (2007) The application of software radio techniques to underwater acoustic communications. In OCEANS 2007-Europe, pp. 1–6, IEEE.
29.
go back to reference Torres, D., Friedman, J., Schmid, T., & Srivastava, M.B. (2009) Software-defined underwater acoustic networking platform. In: Proceedings of the fourth ACM international workshop on underwater networks, p. 7, ACM. Torres, D., Friedman, J., Schmid, T., & Srivastava, M.B. (2009) Software-defined underwater acoustic networking platform. In: Proceedings of the fourth ACM international workshop on underwater networks, p. 7, ACM.
30.
go back to reference Torres, D., Friedman, J., Schmid, T., Srivastava, M. B., Noh, Y., & Gerla, M. (2015). Software-defined underwater acoustic networking platform and its applications. Ad Hoc Networks, 34, 252–264.CrossRef Torres, D., Friedman, J., Schmid, T., Srivastava, M. B., Noh, Y., & Gerla, M. (2015). Software-defined underwater acoustic networking platform and its applications. Ad Hoc Networks, 34, 252–264.CrossRef
31.
go back to reference Wang, J., Ma, L., & Chen, W. (2017). Design of underwater acoustic sensor communication systems based on software-defined networks in big data. International Journal of Distributed Sensor Networks, 13(7), 1550147717719672. Wang, J., Ma, L., & Chen, W. (2017). Design of underwater acoustic sensor communication systems based on software-defined networks in big data. International Journal of Distributed Sensor Networks, 13(7), 1550147717719672.
32.
go back to reference Qin, C., Du, J., Wang, J., & Ren, Y. (2020). A hierarchical information acquisition system for auv assisted internet of underwater things. IEEE Access, 8, 176089–176100.CrossRef Qin, C., Du, J., Wang, J., & Ren, Y. (2020). A hierarchical information acquisition system for auv assisted internet of underwater things. IEEE Access, 8, 176089–176100.CrossRef
33.
go back to reference Lin, C., Han, G., Guizani, M., Bi, Y., & Du, J. (2019). A scheme for delay-sensitive spatiotemporal routing in sdn-enabled underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 68(9), 9280–9292.CrossRef Lin, C., Han, G., Guizani, M., Bi, Y., & Du, J. (2019). A scheme for delay-sensitive spatiotemporal routing in sdn-enabled underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 68(9), 9280–9292.CrossRef
34.
go back to reference Luo, H., Liu, C., & Liang, Y. (2019) A sdn-based testbed for underwater sensor networks Luo, H., Liu, C., & Liang, Y. (2019) A sdn-based testbed for underwater sensor networks
35.
go back to reference Fan, R., Wei, L., Du, P., McGoldrick, C., Gerla, M. (2016) A sdn-controlled underwater mac and routing testbed. In: MILCOM 2016-2016 IEEE Military Communications Conference, pp. 1071–1076, IEEE. Fan, R., Wei, L., Du, P., McGoldrick, C., Gerla, M. (2016) A sdn-controlled underwater mac and routing testbed. In: MILCOM 2016-2016 IEEE Military Communications Conference, pp. 1071–1076, IEEE.
36.
go back to reference Alostad, J. M. (2020). Reliability in iout enabled underwater sensor networks using dynamic adaptive routing protocol. International Journal of Internet Manufacturing and Services, 7(1-2), 115–129.CrossRef Alostad, J. M. (2020). Reliability in iout enabled underwater sensor networks using dynamic adaptive routing protocol. International Journal of Internet Manufacturing and Services, 7(1-2), 115–129.CrossRef
37.
go back to reference Tuna, G., & Gungor, V. C. (2017). A survey on deployment techniques, localization algorithms, and research challenges for underwater acoustic sensor networks. International Journal of Communication Systems, 30(17), e3350.CrossRef Tuna, G., & Gungor, V. C. (2017). A survey on deployment techniques, localization algorithms, and research challenges for underwater acoustic sensor networks. International Journal of Communication Systems, 30(17), e3350.CrossRef
39.
go back to reference Yan, H., Shi, Z.J., & Cui, J.-H. (2008) Dbr: depth-based routing for underwater sensor networks. In:International conference on research in networking, pp. 72–86, Springer, Berlin. Yan, H., Shi, Z.J., & Cui, J.-H. (2008) Dbr: depth-based routing for underwater sensor networks. In:International conference on research in networking, pp. 72–86, Springer, Berlin.
Metadata
Title
An SDN-based framework for QoS routing in internet of underwater things
Authors
Reza Mohammadi
Amin Nazari
Mohammad Nassiri
Mauro Conti
Publication date
24-06-2021
Publisher
Springer US
Published in
Telecommunication Systems / Issue 2/2021
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00812-y

Other articles of this Issue 2/2021

Telecommunication Systems 2/2021 Go to the issue