Skip to main content
Top
Published in: Telecommunication Systems 2/2021

21-06-2021

Upgrading an analog recovery loop for optimized decoding jointly to an increased data rate

Author: Giuseppe Visalli

Published in: Telecommunication Systems | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The maximum likelihood detection theory improves the error rate of a sub-optimal but cheaper, coded symbol recovery loop using oversampling proposed as an alternate solution for the decoding problem without the log-likelihood ratio computation. The former implementation delivers the output data in one-symbol delay, and the required transistor count makes this approach attractive for ultra-low-energy wireless applications. The proposed hardware upgrade includes an analog to digital converter and fixed-point accumulation logic to compute the soft values, replacing a trigger used as a hard detector. This work investigates the soft decoding in the presence of binary and non-binary source symbols. Simulation results show that the soft approach improves the signal-to-noise ratio by 3 dB and 2.5 dB when the encoding rates are 1/3 and 2/3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peng, H., Liu, R., Hou, Y., & Zhao, L. (2016). A Gb/s parallel block-based Viterbi decoder for convolutional codes on GPU. In 2016 8th International Conference on Wireless Communications Signal Processing (WCSP) (pp. 1–6). China: Yangzhou. Peng, H., Liu, R., Hou, Y., & Zhao, L. (2016). A Gb/s parallel block-based Viterbi decoder for convolutional codes on GPU. In 2016 8th International Conference on Wireless Communications Signal Processing (WCSP) (pp. 1–6). China: Yangzhou.
2.
go back to reference Hagenauer, J., & Hoeher, P. (1989). A Viterbi algorithm with soft-decision outputs and its applications. In 1989 IEEE Global Telecommunications Conference and Exhibition’Communications Technology for the 1990s and Beyond’ (pp. 1680-1686), TX, USA: Dallas. Hagenauer, J., & Hoeher, P. (1989). A Viterbi algorithm with soft-decision outputs and its applications. In 1989 IEEE Global Telecommunications Conference and Exhibition’Communications Technology for the 1990s and Beyond’ (pp. 1680-1686), TX, USA: Dallas.
3.
go back to reference Hagenauer, J., & Papke, L. (1994). Decoding turbo-codes with the soft output Viterbi algorithm (SOVA). In Proceedings of IEEE International Symposium on Information Theory (p. 164). Norway: Trondheim, Norway. Hagenauer, J., & Papke, L. (1994). Decoding turbo-codes with the soft output Viterbi algorithm (SOVA). In Proceedings of IEEE International Symposium on Information Theory (p. 164). Norway: Trondheim, Norway.
4.
go back to reference Ramteke, S., Kakde, S., Suryawanshi, Y., & Meshram, M. (2015). Performance analysis of Turbo decoder using soft output Viterbi algorithm. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 1332–1336). India: Melmaruvathur. Ramteke, S., Kakde, S., Suryawanshi, Y., & Meshram, M. (2015). Performance analysis of Turbo decoder using soft output Viterbi algorithm. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 1332–1336). India: Melmaruvathur.
5.
go back to reference Visalli, G. (2019). Analysis and performance of coded symbol recovery loop using oversampling. EURASIP Journal on Advances in Signal Processing, 2019, 1–16.CrossRef Visalli, G. (2019). Analysis and performance of coded symbol recovery loop using oversampling. EURASIP Journal on Advances in Signal Processing, 2019, 1–16.CrossRef
6.
go back to reference Visalli, G., Pappalardo, F., Avellone, G., Rimi, F., & Galluzzo, A. (2008). Method and system for coding decoding signals and computer program product therefor. Google Patents. US Patent 7,424,068 Visalli, G., Pappalardo, F., Avellone, G., Rimi, F., & Galluzzo, A. (2008). Method and system for coding decoding signals and computer program product therefor. Google Patents. US Patent 7,424,068
7.
go back to reference Hagenauer, J., & Winklhofer, M. (1998). The analog decoder. In Proceedings of the IEEE International Symposium on Information Theory (p. 145). USA: Cambridge, MA. Hagenauer, J., & Winklhofer, M. (1998). The analog decoder. In Proceedings of the IEEE International Symposium on Information Theory (p. 145). USA: Cambridge, MA.
8.
go back to reference Loeliger, H., Lustenberger, F., Helfenstein, M., & Tarkoy, F. (1998). Probability propagation and decoding in analog VLSI. In Proceedings of the IEEE International Symposium on Information Theory (p. 146). USA: Cambridge, MA. Loeliger, H., Lustenberger, F., Helfenstein, M., & Tarkoy, F. (1998). Probability propagation and decoding in analog VLSI. In Proceedings of the IEEE International Symposium on Information Theory (p. 146). USA: Cambridge, MA.
9.
go back to reference Tretter, S. A. (1995). Double-sideband suppressed-carrier amplitude modulation and coherent detection (pp. 73–78). Boston, MA: Springer. Tretter, S. A. (1995). Double-sideband suppressed-carrier amplitude modulation and coherent detection (pp. 73–78). Boston, MA: Springer.
10.
go back to reference Ungerboeck, G. (1987). Trellis-coded modulation with redundant signal sets part I: Introduction. IEEE Communications Magazine, 25(2), 5–11.CrossRef Ungerboeck, G. (1987). Trellis-coded modulation with redundant signal sets part I: Introduction. IEEE Communications Magazine, 25(2), 5–11.CrossRef
11.
go back to reference Ungerboeck, G. (1987). Trellis-coded modulation with redundant signal sets part II: State of the art. IEEE Communications Magazine, 25(2), 12–21.CrossRef Ungerboeck, G. (1987). Trellis-coded modulation with redundant signal sets part II: State of the art. IEEE Communications Magazine, 25(2), 12–21.CrossRef
12.
go back to reference Wei, R., Ritcey, J. A., & Lu, B. (2015). TCM with differential encoding: Set partitioning, trellis designs, and distance analysis. IEEE Transactions on Communications, 63(8), 2776–2787.CrossRef Wei, R., Ritcey, J. A., & Lu, B. (2015). TCM with differential encoding: Set partitioning, trellis designs, and distance analysis. IEEE Transactions on Communications, 63(8), 2776–2787.CrossRef
13.
go back to reference Napolitano, A. (2016). Cyclostationarity: New trends and applications. Signal Processing, 120, 385–408.CrossRef Napolitano, A. (2016). Cyclostationarity: New trends and applications. Signal Processing, 120, 385–408.CrossRef
14.
go back to reference Izzo, L., & Napolitano, A. (2003). Sampling of generalized almost-cyclostationary signals. IEEE Transactions on Signal Processing, 51(6), 1546–1556.CrossRef Izzo, L., & Napolitano, A. (2003). Sampling of generalized almost-cyclostationary signals. IEEE Transactions on Signal Processing, 51(6), 1546–1556.CrossRef
15.
go back to reference Cohen, D., Rebeiz, E., Eldar, Y.C., Cabric, D. (2013). Cyclic spectrum reconstruction and cyclostationary detection from sub-Nyquist samples. In 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 425–429). Cohen, D., Rebeiz, E., Eldar, Y.C., Cabric, D. (2013). Cyclic spectrum reconstruction and cyclostationary detection from sub-Nyquist samples. In 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 425–429).
16.
go back to reference Landau, L. T. N., Dörpinghaus, M., & Fettweis, G. P. (2018). 1-bit quantization and oversampling at the receiver: Sequence-based communication. EURASIP Journal on Wireless Communications and Networking, 2018, 1–24.CrossRef Landau, L. T. N., Dörpinghaus, M., & Fettweis, G. P. (2018). 1-bit quantization and oversampling at the receiver: Sequence-based communication. EURASIP Journal on Wireless Communications and Networking, 2018, 1–24.CrossRef
17.
go back to reference Krone, S., & Fettweis, G. (2012). Capacity of communications channels with 1-bit quantization and oversampling at the receiver. In 2012 35th IEEE Sarnoff Symposium (pp. 1–7). Krone, S., & Fettweis, G. (2012). Capacity of communications channels with 1-bit quantization and oversampling at the receiver. In 2012 35th IEEE Sarnoff Symposium (pp. 1–7).
18.
go back to reference Fettweis, G., Dörpinghaus, M., Bender, S., Landau, L., Neuhaus, P., & Schlüter, M. (2019). Zero crossing modulation for communication with temporally oversampled 1-bit quantization. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers (pp. 207–214). Fettweis, G., Dörpinghaus, M., Bender, S., Landau, L., Neuhaus, P., & Schlüter, M. (2019). Zero crossing modulation for communication with temporally oversampled 1-bit quantization. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers (pp. 207–214).
19.
go back to reference Proakis, J. G. (2007). Digital communications (5th ed.). New York: McGraw Hill. Proakis, J. G. (2007). Digital communications (5th ed.). New York: McGraw Hill.
20.
go back to reference Oppenheim, A. V., Willsky, A. S., & Nawab, S. H. (1996). Signals and systems (2nd ed.). USA: Prentice-Hall Inc. Oppenheim, A. V., Willsky, A. S., & Nawab, S. H. (1996). Signals and systems (2nd ed.). USA: Prentice-Hall Inc.
21.
go back to reference Liao, Y.-T., & Richard Shi, C.-J. (2008). A 6–11Ghz multi-phase VCO design with active inductors. In 2008 IEEE International Symposium on Circuits and Systems (pp. 988–991). Liao, Y.-T., & Richard Shi, C.-J. (2008). A 6–11Ghz multi-phase VCO design with active inductors. In 2008 IEEE International Symposium on Circuits and Systems (pp. 988–991).
22.
go back to reference Papoulis, A. (2007). Probability, random variables and stochastic processes (5th ed.). New York: McGraw-Hill Companies. Papoulis, A. (2007). Probability, random variables and stochastic processes (5th ed.). New York: McGraw-Hill Companies.
23.
go back to reference Mesgarzadeh., B., & Alvandpour, A. (2006). A wide-tuning range 1.8 Ghz quadrature VCO utilizing coupled ring oscillators. In 2006 IEEE International Symposium on Circuits and Systems (pp. 4–pp). Mesgarzadeh., B., & Alvandpour, A. (2006). A wide-tuning range 1.8 Ghz quadrature VCO utilizing coupled ring oscillators. In 2006 IEEE International Symposium on Circuits and Systems (pp. 4–pp).
24.
go back to reference Katyal, V., Geiger, R.L., & Chen, D.J. (2008). Adjustable hysteresis CMOS Schmitt triggers. In 2008 IEEE International Symposium on Circuits and Systems (pp. 1938–1941). Katyal, V., Geiger, R.L., & Chen, D.J. (2008). Adjustable hysteresis CMOS Schmitt triggers. In 2008 IEEE International Symposium on Circuits and Systems (pp. 1938–1941).
25.
go back to reference Trivedi, R. (2006). Low power and high speed Sample-and-Hold Circuit. 2006 49th IEEE International Midwest Symposium on Circuits and Systems, 1, 453–456.CrossRef Trivedi, R. (2006). Low power and high speed Sample-and-Hold Circuit. 2006 49th IEEE International Midwest Symposium on Circuits and Systems, 1, 453–456.CrossRef
26.
go back to reference Kakarountas, A. P., Theodoridis, G., Papadomanolakis, K. S., & Goutis, C. (2003). A novel high-speed counter with counting rate independent of the counter’s length. In 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 (Vol. 3, pp. 1164–1167). Kakarountas, A. P., Theodoridis, G., Papadomanolakis, K. S., & Goutis, C. (2003). A novel high-speed counter with counting rate independent of the counter’s length. In 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 (Vol. 3, pp. 1164–1167).
27.
go back to reference Mutz, D., & George, K. (2016). Costas loop and FFT based BPSK demodulation for pulsed radar receivers. 2016 IEEE Aerospace Conference (pp. 1–12). Big Sky: MT, USA. Mutz, D., & George, K. (2016). Costas loop and FFT based BPSK demodulation for pulsed radar receivers. 2016 IEEE Aerospace Conference (pp. 1–12). Big Sky: MT, USA.
28.
go back to reference Gallager, R. G. (2008). Principles of digital communication. Cambridge, UK: Cambridge University Press.CrossRef Gallager, R. G. (2008). Principles of digital communication. Cambridge, UK: Cambridge University Press.CrossRef
29.
go back to reference Benedetto, S., Biglieri, E., & Castellani, V. (1988). Digital transmission theory. USA: Prentice-Hall Inc. Benedetto, S., Biglieri, E., & Castellani, V. (1988). Digital transmission theory. USA: Prentice-Hall Inc.
30.
go back to reference Farsad, N., Rao, M., & Goldsmith, A. (2018). Deep learning for joint source-channel coding of text. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2326–2330). Farsad, N., Rao, M., & Goldsmith, A. (2018). Deep learning for joint source-channel coding of text. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2326–2330).
31.
go back to reference Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., & Viswanath, P. (2020). Joint channel coding and modulation via deep learning. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5). Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., & Viswanath, P. (2020). Joint channel coding and modulation via deep learning. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5).
Metadata
Title
Upgrading an analog recovery loop for optimized decoding jointly to an increased data rate
Author
Giuseppe Visalli
Publication date
21-06-2021
Publisher
Springer US
Published in
Telecommunication Systems / Issue 2/2021
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00807-9

Other articles of this Issue 2/2021

Telecommunication Systems 2/2021 Go to the issue