Skip to main content
Top
Published in: Experiments in Fluids 6/2020

01-06-2020 | Research Article

An ultrasound-based approach for the characterization of fluid–structure interaction of large arterial vessels

Authors: Sonja Pejcic, Mohammad Reza Najjari, Kai Zhang, Gianluigi Bisleri, David E. Rival

Published in: Experiments in Fluids | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An ultrasound-based approach to characterize the fluid–structure interaction in large arterial vessels is presented. The ultrasound-based data are fed into a new dynamic model accounting for a two-dimensional (2D) stress state, which in turn provides a better estimate of the material elasticity under dynamic loading. In order to validate the semi-empirical model, a compliant, synthetic vessel was subjected to a range of pulsatile and steady flow profiles. Ultrasound imaging was used to capture the flow field through the compliant vessel and its change in diameter over time. Internal pressure was extracted from ultrasound image velocimetry using spatial integration of the Navier–Stokes equation, and used to find the pressure–area relationship. Two constitutive laws describing a one-dimensional expansion of a cylindrical vessel, the Laplace law and one from Olufsen (Am J Physiol-Heart Circul Physiol 276(1):H257–H268, 1999), were also used to estimate the instantaneous elastic modulus. A uniaxial tensile test of the vessel material was performed to provide validation criteria. Under steady flow, the Laplace law predicted the elasticity of the vessel material with 255% error and the results from Olufsen (Am J Physiol-Heart Circul Physiol 276(1):H257–H268, 1999) had an error of 99%. In contrast, our developed 2D stress model predicted the elasticity with less than 10% error. The Laplace law and the Olufsen (Am J Physiol-Heart Circul Physiol 276(1):H257–H268, 1999) model were revealed to be flow-dependent such that the trend of the resultant elastic modulus varied for each pulsatile flow case. However, the 2D stress model showed no flow dependency, presenting consistent elasticity results across all test cases.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bia D, Aguirre I, Zócalo Y, Devera L, Cabrera Fischer E, Armentano R (2005) Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship. Revista Española de Cardiología (English Edition) 58(2):167–174. https://doi.org/10.1016/s1885-5857(06)60360-5 CrossRef Bia D, Aguirre I, Zócalo Y, Devera L, Cabrera Fischer E, Armentano R (2005) Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship. Revista Española de Cardiología (English Edition) 58(2):167–174. https://​doi.​org/​10.​1016/​s1885-5857(06)60360-5 CrossRef
go back to reference Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D (2006) Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. J Appl Math 67(1):164–193MathSciNetMATH Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D (2006) Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. J Appl Math 67(1):164–193MathSciNetMATH
go back to reference Findley WN, Lai JSY, Onaran K (1976) Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Elsevier, New YorkMATH Findley WN, Lai JSY, Onaran K (1976) Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Elsevier, New YorkMATH
go back to reference Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New YorkCrossRef Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New YorkCrossRef
go back to reference Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, Berlin Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, Berlin
go back to reference Hamadiche M, Gad-El-Hak M (2001) Temporal stability of flow through viscoelastic tubes. J Fluids Struct 15(1):1–13 10.1006/jCrossRef Hamadiche M, Gad-El-Hak M (2001) Temporal stability of flow through viscoelastic tubes. J Fluids Struct 15(1):1–13 10.1006/jCrossRef
go back to reference Malek AM, Alper SL (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282(21):2035–2042CrossRef Malek AM, Alper SL (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282(21):2035–2042CrossRef
go back to reference Roman MJ, Devereux RB, Kramer-fox R, O’Loughlin J (1989) Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 64:507–512CrossRef Roman MJ, Devereux RB, Kramer-fox R, O’Loughlin J (1989) Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 64:507–512CrossRef
Metadata
Title
An ultrasound-based approach for the characterization of fluid–structure interaction of large arterial vessels
Authors
Sonja Pejcic
Mohammad Reza Najjari
Kai Zhang
Gianluigi Bisleri
David E. Rival
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 6/2020
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-02966-y

Other articles of this Issue 6/2020

Experiments in Fluids 6/2020 Go to the issue

Premium Partners