Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

19-03-2018 | Original Article

Analysis and design of single-phase power factor corrector with genetic algorithm and adaptive neuro-fuzzy-based sliding mode controller using DC–DC SEPIC

Authors: Subbiah Durgadevi, Mallapu Gopinath Umamaheswari

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a methodology for single-phase power factor correction with DC–DC single-ended primary inductance converter (SEPIC) using cascade control strategy which comprises of genetic algorithm-based outer PI controller and an inner current controller which uses an adaptive neuro-fuzzy inference system-based sliding mode controller. DC–DC SEPIC is a fourth-order converter, and in order to reduce the complexity in controller design, reduced-order model of the original higher-order system is obtained by using Type-I Hankel matrix method. The performance of the proposed system is analysed using MATLAB/Simulink-based simulation studies. In order to ensure the robustness of the proposed controller, the performance parameters such as percentage total harmonic distortion, power factor, % voltage regulation, and % efficiency are analysed. From the simulation results, it is inferred that the proposed method provides efficient tracking of output voltage and effective source current shaping for load, line, and set point variations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang J-W, Do H-L (2015) Efficient single-switch boost-dual-input flyback PFC converter with reduced switching loss. IEEE Trans Industr Electron 62(12):7460–7468MathSciNetCrossRef Yang J-W, Do H-L (2015) Efficient single-switch boost-dual-input flyback PFC converter with reduced switching loss. IEEE Trans Industr Electron 62(12):7460–7468MathSciNetCrossRef
2.
go back to reference Poorali B, Adib E (2016) Analysis of the integrated SEPIC-flyback converter as a single-stage single-switch power-factor-correction LED driver. IEEE Trans Industr Electron 63(6):3562–3570CrossRef Poorali B, Adib E (2016) Analysis of the integrated SEPIC-flyback converter as a single-stage single-switch power-factor-correction LED driver. IEEE Trans Industr Electron 63(6):3562–3570CrossRef
3.
go back to reference Lu DDC, Iu HHC, Pjevalica V (2009) Single-stage AC/DC boost–forward converter with high power factor and regulated bus and output voltages. IEEE Trans Industr Electron 56(6):2128–2132CrossRef Lu DDC, Iu HHC, Pjevalica V (2009) Single-stage AC/DC boost–forward converter with high power factor and regulated bus and output voltages. IEEE Trans Industr Electron 56(6):2128–2132CrossRef
4.
go back to reference Lo YK, Lin CY, Chiu HJ et al (2013) Analysis and design of a push–pull quasi-resonant boost power factor corrector. IEEE Trans Power Electron 28(1):347–356CrossRef Lo YK, Lin CY, Chiu HJ et al (2013) Analysis and design of a push–pull quasi-resonant boost power factor corrector. IEEE Trans Power Electron 28(1):347–356CrossRef
5.
go back to reference Chen RT, Chen YY (2006) Single-stage push–pull boost converter with integrated magnetics and input current shaping technique. IEEE Trans Power Electron 21(5):1193–1203CrossRef Chen RT, Chen YY (2006) Single-stage push–pull boost converter with integrated magnetics and input current shaping technique. IEEE Trans Power Electron 21(5):1193–1203CrossRef
6.
go back to reference Lu DD, Ki SK (2013) Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters. IEEE Trans Power Electron 28(5):2105–2110CrossRef Lu DD, Ki SK (2013) Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters. IEEE Trans Power Electron 28(5):2105–2110CrossRef
7.
go back to reference Liu X, Xu J, Chen Z et al (2015) Single-inductor dual-output buck–boost power factor correction converter. IEEE Trans Industr Electron 62(2):943–952CrossRef Liu X, Xu J, Chen Z et al (2015) Single-inductor dual-output buck–boost power factor correction converter. IEEE Trans Industr Electron 62(2):943–952CrossRef
8.
go back to reference Pavlovic T, Bjazi T, Ban Z (2013) Simplified averaged models of DC–DC power converters suitable for controller design and microgrid simulation. IEEE Trans Power Electron 28(7):3266–3275CrossRef Pavlovic T, Bjazi T, Ban Z (2013) Simplified averaged models of DC–DC power converters suitable for controller design and microgrid simulation. IEEE Trans Power Electron 28(7):3266–3275CrossRef
9.
go back to reference Umamaheswari MG, Uma G, Vijayalakshmi KM (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992CrossRef Umamaheswari MG, Uma G, Vijayalakshmi KM (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992CrossRef
10.
go back to reference Davoudi A, Jatskevich J, Chapman PL et al (2013) Multi-resolution modeling of power electronics circuits using model-order reduction techniques. IEEE Trans Circuits Syst 60(3):810–823MathSciNetCrossRef Davoudi A, Jatskevich J, Chapman PL et al (2013) Multi-resolution modeling of power electronics circuits using model-order reduction techniques. IEEE Trans Circuits Syst 60(3):810–823MathSciNetCrossRef
11.
go back to reference Vishwakarma CB (2014) Modified Hankel matrix approach for model order reduction in time domain. World Acad Sci Eng Technol Int J Math Comput Phys Electr Comput Eng 8(2):404–410 Vishwakarma CB (2014) Modified Hankel matrix approach for model order reduction in time domain. World Acad Sci Eng Technol Int J Math Comput Phys Electr Comput Eng 8(2):404–410
12.
go back to reference Umamaheswari MG, Uma G, Redline Vijitha S (2012) Comparison of hysteresis control and reduced order linear quadratic regulator control for power factor correction using Dc-Dc cuk converters. J Circuits Syst Comput 21(1):1250002CrossRef Umamaheswari MG, Uma G, Redline Vijitha S (2012) Comparison of hysteresis control and reduced order linear quadratic regulator control for power factor correction using Dc-Dc cuk converters. J Circuits Syst Comput 21(1):1250002CrossRef
13.
go back to reference He Y, Luo FL (2006) Sliding-mode control for DC–DC converter switch constant switching frequency. IEEE Proc Control Theory Appl 153(1):37–45CrossRef He Y, Luo FL (2006) Sliding-mode control for DC–DC converter switch constant switching frequency. IEEE Proc Control Theory Appl 153(1):37–45CrossRef
14.
go back to reference Umamaheswari MG, Uma G, Isabella LA (2014) Analysis and design of digital predictive controller for PFC Cuk converter. J Comput Electron 13:142–154CrossRef Umamaheswari MG, Uma G, Isabella LA (2014) Analysis and design of digital predictive controller for PFC Cuk converter. J Comput Electron 13:142–154CrossRef
15.
go back to reference Lamar DG, Fernandez A, Arias M, Rodriguez M et al (2008) A unity power factor correction pre regulator with fast dynamic response based on a low-cost microcontroller. IEEE Trans Power Electron 23(2):635–642CrossRef Lamar DG, Fernandez A, Arias M, Rodriguez M et al (2008) A unity power factor correction pre regulator with fast dynamic response based on a low-cost microcontroller. IEEE Trans Power Electron 23(2):635–642CrossRef
16.
go back to reference Chu G, Tse CK, Wong SC, Tan S-C (2009) A unified approach for the derivation of robust control for boost PFC converters. IEEE Trans Power Electron 24(11):2531–2544CrossRef Chu G, Tse CK, Wong SC, Tan S-C (2009) A unified approach for the derivation of robust control for boost PFC converters. IEEE Trans Power Electron 24(11):2531–2544CrossRef
17.
go back to reference Huber Laszlo, Kumar Misha, Jovanovi Milan M (2015) Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier. IEEE Trans Power Electron 30(12):7123–7137CrossRef Huber Laszlo, Kumar Misha, Jovanovi Milan M (2015) Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier. IEEE Trans Power Electron 30(12):7123–7137CrossRef
18.
go back to reference de Melo PF, Gules R, Romaneli EFR, Annunziato RC (2010) A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications. IEEE Trans Power Electron 25(2):310–321CrossRef de Melo PF, Gules R, Romaneli EFR, Annunziato RC (2010) A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications. IEEE Trans Power Electron 25(2):310–321CrossRef
19.
go back to reference Bodetto Mirko, El Aroudi Abdelali, Cid-Pastor Angel et al (2016) Design of AC-DC PFC higher order converters with regulated output current for low power applications. IEEE Trans Power Electron 31(3):2012–2025CrossRef Bodetto Mirko, El Aroudi Abdelali, Cid-Pastor Angel et al (2016) Design of AC-DC PFC higher order converters with regulated output current for low power applications. IEEE Trans Power Electron 31(3):2012–2025CrossRef
20.
go back to reference Silva JF (1999) Sliding-mode control of boost-type unity-power-factor PWM rectifiers. IEEE Trans Industr Electron 46(3):594–603CrossRef Silva JF (1999) Sliding-mode control of boost-type unity-power-factor PWM rectifiers. IEEE Trans Industr Electron 46(3):594–603CrossRef
21.
go back to reference 519-2014 - IEEE recommended practice and requirements for harmonic control in electric power systems. Transmission and Distribution Committee of the IEEE Power and Energy Societ, IEEE-SA Standards Board, pp 1–29. 519-2014 - IEEE recommended practice and requirements for harmonic control in electric power systems. Transmission and Distribution Committee of the IEEE Power and Energy Societ, IEEE-SA Standards Board, pp 1–29.
22.
go back to reference Simonetti DSL, Sebastıan J, Uceda J (1997) The discontinuous conduction mode sepic and cuk power factor preregulators analysis and design. IEEE Trans Industr Electron 44:630–637CrossRef Simonetti DSL, Sebastıan J, Uceda J (1997) The discontinuous conduction mode sepic and cuk power factor preregulators analysis and design. IEEE Trans Industr Electron 44:630–637CrossRef
23.
go back to reference Melo PF, Gules R, Romaneli EFR et al (2010) A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications. IEEE Trans Power Electron 25(2):310–321CrossRef Melo PF, Gules R, Romaneli EFR et al (2010) A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications. IEEE Trans Power Electron 25(2):310–321CrossRef
24.
go back to reference Mahdavi Mohammad, Farzanehfard Hosein (2011) Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. IEEE Trans Industr Electron 58(9):4153–4160CrossRef Mahdavi Mohammad, Farzanehfard Hosein (2011) Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. IEEE Trans Industr Electron 58(9):4153–4160CrossRef
25.
go back to reference Lamar DG, Zuniga JS, Alonso AR et al (2009) A very simple control strategy for power factor correctors driving high-brightness LEDs. IEEE Trans Power Electron 24(8):2032–2041CrossRef Lamar DG, Zuniga JS, Alonso AR et al (2009) A very simple control strategy for power factor correctors driving high-brightness LEDs. IEEE Trans Power Electron 24(8):2032–2041CrossRef
26.
go back to reference Erickson R, Maksimovic D (2000) Fundamentals of power electronics. Kluwer, Norwell Erickson R, Maksimovic D (2000) Fundamentals of power electronics. Kluwer, Norwell
27.
go back to reference Ridley R (2006) Analyzing the sepic converter. Power Syst em Design Europe, Denmark, Ballard, pp 14–18 Ridley R (2006) Analyzing the sepic converter. Power Syst em Design Europe, Denmark, Ballard, pp 14–18
28.
go back to reference Gu W, Zhang D (2008) Designing a SEPIC converter. Excellent design guidelines, national semiconductor in application note, pp 1–6 Gu W, Zhang D (2008) Designing a SEPIC converter. Excellent design guidelines, national semiconductor in application note, pp 1–6
29.
go back to reference Kessal A, Rahmani L (2014) Ga-optimized parameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters. IEEE Trans Power Electron 29(6):3159–3165CrossRef Kessal A, Rahmani L (2014) Ga-optimized parameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters. IEEE Trans Power Electron 29(6):3159–3165CrossRef
30.
go back to reference Tulay G, Iskender I, Mamizadeh A (2014) Boost PFC PI control by using heuristic optimization method. IJTPE Publ Int Org IOTPE 6(18):167–171 Tulay G, Iskender I, Mamizadeh A (2014) Boost PFC PI control by using heuristic optimization method. IJTPE Publ Int Org IOTPE 6(18):167–171
31.
go back to reference Mamarelis E, Petrone G, Spagnuolo G (2014) Design of a sliding-mode-controlled SEPIC for PV MPPT applications. IEEE Trans Industr Electron 61(7):3387–3398CrossRef Mamarelis E, Petrone G, Spagnuolo G (2014) Design of a sliding-mode-controlled SEPIC for PV MPPT applications. IEEE Trans Industr Electron 61(7):3387–3398CrossRef
32.
go back to reference Marcos-Pastor Adria, Vidal-Idiarte Enric, Cid-Pastor Angel (2015) Loss-free resistor-based power factor correction using a semi-bridgeless boost rectifier in sliding-mode control. IEEE Trans Power Electron 30(10):5842–5853CrossRef Marcos-Pastor Adria, Vidal-Idiarte Enric, Cid-Pastor Angel (2015) Loss-free resistor-based power factor correction using a semi-bridgeless boost rectifier in sliding-mode control. IEEE Trans Power Electron 30(10):5842–5853CrossRef
33.
go back to reference Paul Arun K, Mishra JK, Radke MG (1994) Reduced order sliding mode control for pneumatic actuator. IEEE Trans Control Syst Technol 2(3):271–276CrossRef Paul Arun K, Mishra JK, Radke MG (1994) Reduced order sliding mode control for pneumatic actuator. IEEE Trans Control Syst Technol 2(3):271–276CrossRef
34.
go back to reference Bandyopadhyay B, Alemayehu G, Abera E (2007) Sliding mode control design via reduced order model approach. Int J Autom Comput 04(4):329–334CrossRef Bandyopadhyay B, Alemayehu G, Abera E (2007) Sliding mode control design via reduced order model approach. Int J Autom Comput 04(4):329–334CrossRef
35.
go back to reference Goudarzian A, Nasiri H, Abjadi N (2016) Design and implementation of a constant frequency sliding mode controller for a luo converter. Int J Eng Trans Appl 29(2):202–210 Goudarzian A, Nasiri H, Abjadi N (2016) Design and implementation of a constant frequency sliding mode controller for a luo converter. Int J Eng Trans Appl 29(2):202–210
36.
go back to reference Rossetto L, Spiazzi G, Tenti P, Fabiano B et al (1994) Fast response high-quality rectifier with sliding mode control. IEEE Trans Power Electron 9(2):146–152CrossRef Rossetto L, Spiazzi G, Tenti P, Fabiano B et al (1994) Fast response high-quality rectifier with sliding mode control. IEEE Trans Power Electron 9(2):146–152CrossRef
37.
go back to reference Malesani L, Rossetto L, Spiazzi G (1995) Performance optimization of Cuk converters by sliding-mode control. IEEE Trans Power Electron 10(3):302–309CrossRef Malesani L, Rossetto L, Spiazzi G (1995) Performance optimization of Cuk converters by sliding-mode control. IEEE Trans Power Electron 10(3):302–309CrossRef
38.
go back to reference Umamaheswari MG, Uma G, Vijayalakshmi K (2013) Analysis and design of reduced-order sliding-mode controller for three-phase power factor correction using cuk rectifiers. IET Power Electron 6(5):935–945CrossRef Umamaheswari MG, Uma G, Vijayalakshmi K (2013) Analysis and design of reduced-order sliding-mode controller for three-phase power factor correction using cuk rectifiers. IET Power Electron 6(5):935–945CrossRef
39.
go back to reference Soltanpour MR, Zolfaghari B, Soltani M (2013) Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int J Innov Comput Inf Control 9(7):2713–2726 Soltanpour MR, Zolfaghari B, Soltani M (2013) Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int J Innov Comput Inf Control 9(7):2713–2726
40.
go back to reference Bououden S, Chadli M, Karimi HR (2013) Fuzzy sliding mode controller design using Takagi–Sugeno modelled nonlinear systems. Hindawi Publishing Corporation Mathematical Problems in Engineering 2013, Article ID 734094 Bououden S, Chadli M, Karimi HR (2013) Fuzzy sliding mode controller design using Takagi–Sugeno modelled nonlinear systems. Hindawi Publishing Corporation Mathematical Problems in Engineering 2013, Article ID 734094
Metadata
Title
Analysis and design of single-phase power factor corrector with genetic algorithm and adaptive neuro-fuzzy-based sliding mode controller using DC–DC SEPIC
Authors
Subbiah Durgadevi
Mallapu Gopinath Umamaheswari
Publication date
19-03-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3424-2

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner