Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

16-03-2018 | Original Article

Projective synchronization for fractional-order memristor-based neural networks with time delays

Authors: Yajuan Gu, Yongguang Yu, Hu Wang

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the global projective synchronization for fractional-order memristor-based neural networks with multiple time delays is investigated via combining open loop control with the time-delayed feedback control. A comparison theorem for a class of fractional-order systems with multiple time delays is proposed. Based on the given comparison theorem and Lyapunov method, the synchronization conditions are derived under the framework of Filippov solution and differential inclusion theory. Several feedback control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization for the fractional-order memristor-based neural networks with time delays. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519 Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519
2.
go back to reference Strukov D, Snider G, Stewart D, Williams R (2008) The missing memristor found. Nature 453(7191):80–83 Strukov D, Snider G, Stewart D, Williams R (2008) The missing memristor found. Nature 453(7191):80–83
4.
go back to reference Wu A, Zeng Z (2012) Exponential stabilization of memristive neural networks with time delays. IEEE Trans Neural Netw Learn Syst 23(12):1919–1929CrossRef Wu A, Zeng Z (2012) Exponential stabilization of memristive neural networks with time delays. IEEE Trans Neural Netw Learn Syst 23(12):1919–1929CrossRef
5.
go back to reference Zeng Z, Wang J (2008) Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. IEEE Trans Syst Man Cybern Part B: Cybern 38(6):1525–1536CrossRef Zeng Z, Wang J (2008) Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. IEEE Trans Syst Man Cybern Part B: Cybern 38(6):1525–1536CrossRef
6.
go back to reference Zeng Z, Wang J (2009) Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw 22:651–657MATHCrossRef Zeng Z, Wang J (2009) Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw 22:651–657MATHCrossRef
7.
go back to reference Zeng Z, Wang J, Liao X (2004) Stability analysis of delayed cellular neural networks described using cloning templates. IEEE Trans Circuits Syst I: Regul Pap 51(11):2313–2324MathSciNetMATHCrossRef Zeng Z, Wang J, Liao X (2004) Stability analysis of delayed cellular neural networks described using cloning templates. IEEE Trans Circuits Syst I: Regul Pap 51(11):2313–2324MathSciNetMATHCrossRef
8.
go back to reference Zhang G, Shen Y, Quan Y, Sun J (2013) Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci 232:386–396MathSciNetMATHCrossRef Zhang G, Shen Y, Quan Y, Sun J (2013) Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci 232:386–396MathSciNetMATHCrossRef
9.
go back to reference Yang X, Cao J, Yu W (2014) Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn Neurodyn 8:239–249CrossRef Yang X, Cao J, Yu W (2014) Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn Neurodyn 8:239–249CrossRef
10.
go back to reference Li N, Cao J (2015) New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw 61:1–9MATHCrossRef Li N, Cao J (2015) New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw 61:1–9MATHCrossRef
12.
go back to reference Bao H, Park JH, Cao J (2016) Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay. IEEE Trans Neural Netw Learn Syst 27(1):190–201MathSciNetCrossRef Bao H, Park JH, Cao J (2016) Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay. IEEE Trans Neural Netw Learn Syst 27(1):190–201MathSciNetCrossRef
13.
go back to reference Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82(15):3024–3045CrossRef Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82(15):3024–3045CrossRef
14.
go back to reference Chee C, Xu D (2006) Chaos-based M-ary digital communication technique using controller projective synchronization. IEE Proc Circuits Dev Syst 153(4):357–360CrossRef Chee C, Xu D (2006) Chaos-based M-ary digital communication technique using controller projective synchronization. IEE Proc Circuits Dev Syst 153(4):357–360CrossRef
15.
go back to reference Wang S, Yu Y, Diao M (2010) Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys A 389(21):4981–4988CrossRef Wang S, Yu Y, Diao M (2010) Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys A 389(21):4981–4988CrossRef
16.
go back to reference Wang S, Yu Y, Wen G (2014) Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Anal: Hybrid Syst 11:129–138MathSciNetMATH Wang S, Yu Y, Wen G (2014) Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Anal: Hybrid Syst 11:129–138MathSciNetMATH
17.
go back to reference Peng G, Jiang Y, Chen F (2008) Generalized projective synchronization of fractional order chaotic systems. Phys A 387(14):3738–3746CrossRef Peng G, Jiang Y, Chen F (2008) Generalized projective synchronization of fractional order chaotic systems. Phys A 387(14):3738–3746CrossRef
18.
19.
go back to reference Chen L, Chai Y, Wu R (2011) Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems. Phys Lett A 375(21):2099–2110MATHCrossRef Chen L, Chai Y, Wu R (2011) Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems. Phys Lett A 375(21):2099–2110MATHCrossRef
20.
go back to reference Park JH (2008) Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J Comput Appl Math 213(1):288–293MATHCrossRef Park JH (2008) Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J Comput Appl Math 213(1):288–293MATHCrossRef
21.
go back to reference Park JH (2007) Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter. Chaos, Solitons, Fractals 34(5):1552–1559MATHCrossRef Park JH (2007) Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter. Chaos, Solitons, Fractals 34(5):1552–1559MATHCrossRef
22.
go back to reference Lundstrom B, Higgs M, Spain W, Fairhall A (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335–1342CrossRef Lundstrom B, Higgs M, Spain W, Fairhall A (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335–1342CrossRef
23.
go back to reference Kaslik E, Sivasundaram S (2011) Dynamics of fractional-order neural networks. In: Proceedings of the international conference on neural networks. California, USA, IEEE, p 611–618 Kaslik E, Sivasundaram S (2011) Dynamics of fractional-order neural networks. In: Proceedings of the international conference on neural networks. California, USA, IEEE, p 611–618
24.
go back to reference Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256MATHCrossRef Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256MATHCrossRef
25.
go back to reference Yu J, Hu C, Jiang H (2012) \(\alpha\)-stability and \(\alpha\)-synchronization for fractional-order neural networks. Neural Netw 35:82–87CrossRefMATH Yu J, Hu C, Jiang H (2012) \(\alpha\)-stability and \(\alpha\)-synchronization for fractional-order neural networks. Neural Netw 35:82–87CrossRefMATH
26.
go back to reference Song C, Cao J (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498CrossRef Song C, Cao J (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498CrossRef
27.
go back to reference Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal: Hybrid Syst 16:104–121MathSciNetMATH Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal: Hybrid Syst 16:104–121MathSciNetMATH
28.
go back to reference Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111(2):190–194CrossRef Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111(2):190–194CrossRef
29.
go back to reference Wang H, Yu Y, Wen G, Zhang S (2015) Stability analysis of fractional-order neural networks with time delay. Neural Process Lett 42(2):479–500CrossRef Wang H, Yu Y, Wen G, Zhang S (2015) Stability analysis of fractional-order neural networks with time delay. Neural Process Lett 42(2):479–500CrossRef
30.
go back to reference Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109MATHCrossRef Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109MATHCrossRef
31.
go back to reference Wang H, Yu Y, Wen G, Zhang S (2015) Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154:15–23CrossRef Wang H, Yu Y, Wen G, Zhang S (2015) Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154:15–23CrossRef
32.
go back to reference Bao H, Park JH, Cao J (2015) Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn 82(3):1343–1354MathSciNetMATHCrossRef Bao H, Park JH, Cao J (2015) Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn 82(3):1343–1354MathSciNetMATHCrossRef
33.
go back to reference Yu J, Hu C, Jiang H (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95MATHCrossRef Yu J, Hu C, Jiang H (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95MATHCrossRef
34.
go back to reference Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8MATHCrossRef Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8MATHCrossRef
35.
go back to reference Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9MATHCrossRef Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9MATHCrossRef
36.
go back to reference Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
37.
go back to reference Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, New YorkMATH Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, New YorkMATH
38.
go back to reference Lakshmikantham V, Leela S, Devi J (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, CambridgeMATH Lakshmikantham V, Leela S, Devi J (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, CambridgeMATH
40.
go back to reference Bhalekar S, Gejji V (2011) A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. Fract Calc Appl Anal 1(5):1–9 Bhalekar S, Gejji V (2011) A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. Fract Calc Appl Anal 1(5):1–9
41.
go back to reference Aubin J, Frankowska H (1990) Set-valued analysis. Birkhäauser, BostonMATH Aubin J, Frankowska H (1990) Set-valued analysis. Birkhäauser, BostonMATH
42.
go back to reference Filippov A (1988) Differential equations with discontinuous right-hand side. Kluwer Academic Publishers, DordrechtMATHCrossRef Filippov A (1988) Differential equations with discontinuous right-hand side. Kluwer Academic Publishers, DordrechtMATHCrossRef
43.
go back to reference Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957MathSciNetCrossRef Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957MathSciNetCrossRef
44.
go back to reference Gu Y, Yu Y, Wang H (2016) Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J Franklin Inst 353:3657–3684MathSciNetMATHCrossRef Gu Y, Yu Y, Wang H (2016) Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J Franklin Inst 353:3657–3684MathSciNetMATHCrossRef
45.
go back to reference Zhao J, Wang J, Park JH, Shen H (2015) Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates. Nonlinear Anal Hybrid Syst 15:52–62MathSciNetMATHCrossRef Zhao J, Wang J, Park JH, Shen H (2015) Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates. Nonlinear Anal Hybrid Syst 15:52–62MathSciNetMATHCrossRef
Metadata
Title
Projective synchronization for fractional-order memristor-based neural networks with time delays
Authors
Yajuan Gu
Yongguang Yu
Hu Wang
Publication date
16-03-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3391-7

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner