Skip to main content
Top

2015 | OriginalPaper | Chapter

10. Analysis of Biological Networks

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biological processes such as the interaction between proteins or metabolic reactions can be represented by networks which can be modeled by graphs. Biological networks are present in the cell and outside the cell. Our aim in this chapter is to first introduce the networks in the cell and analyze them as graphs. Centrality analysis provides information about the important nodes and edges in biological networks and we describe algorithms to find various centrality measures. The main problems to investigate in the graph structure of a biological network are the module detection, discovery of recurrent subgraphs called network motifs and aligning two or more networks as we discuss. We will see these networks have interesting features such as small-world, scale-free properties which are not found in random networks. All of these problems are discussed in detail in the rest of this part of the book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J Theor Biol 223:1–18CrossRef Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J Theor Biol 223:1–18CrossRef
3.
go back to reference Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248CrossRef Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248CrossRef
4.
go back to reference Pablo Carbonell P, Anne-Galle Planson A-G, Davide Fichera D, Jean-Loup Faulon J-P (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122CrossRef Pablo Carbonell P, Anne-Galle Planson A-G, Davide Fichera D, Jean-Loup Faulon J-P (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122CrossRef
5.
go back to reference Davidson EH, Rast JP, Oliveri P, Ransick A et al (2020) A genomic regulatory network for development. Science, 295:1669–1678 Davidson EH, Rast JP, Oliveri P, Ransick A et al (2020) A genomic regulatory network for development. Science, 295:1669–1678
6.
go back to reference Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102CrossRef Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102CrossRef
7.
go back to reference Identifying gene regulatory networks from gene expression data Identifying gene regulatory networks from gene expression data
9.
go back to reference Goh K, Kahng B, Kim D (2005) Graph theoretic analysis of protein interaction networks of eukaryotes. Physica A 357:501–512 Goh K, Kahng B, Kim D (2005) Graph theoretic analysis of protein interaction networks of eukaryotes. Physica A 357:501–512
10.
go back to reference He Y, Chen Z, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350 He Y, Chen Z, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350
11.
go back to reference He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimers disease. J Neurosci 28:4756–4766CrossRef He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimers disease. J Neurosci 28:4756–4766CrossRef
12.
go back to reference Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654CrossRef Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654CrossRef
13.
go back to reference Junker B (2008) Analysis of biological networks, Chap. 9. Wiley ISBN: 978-0-470-04144-4 Junker B (2008) Analysis of biological networks, Chap. 9. Wiley ISBN: 978-0-470-04144-4
14.
go back to reference Koschtzki D, Lehmann KA, Tenfelde-Podehl D, Zlotowski O (2005) Advanced centrality concepts. Springer-Verlag LNCS Tutorial 3418:83-111, In: Brandes U, Erlebach T (eds) Network analysis: methodological foundations Koschtzki D, Lehmann KA, Tenfelde-Podehl D, Zlotowski O (2005) Advanced centrality concepts. Springer-Verlag LNCS Tutorial 3418:83-111, In: Brandes U, Erlebach T (eds) Network analysis: methodological foundations
15.
go back to reference Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2):89–119CrossRef Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2):89–119CrossRef
16.
go back to reference Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192CrossRef Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192CrossRef
17.
go back to reference Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos Pantelis GPG, (2011) Using graph theory to analyze biological networks. Biodata Mining 4:10. doi:10.1186/1756-0381-4-10 Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos Pantelis GPG, (2011) Using graph theory to analyze biological networks. Biodata Mining 4:10. doi:10.​1186/​1756-0381-4-10
18.
go back to reference Perron O (1907) Zur Theorie der Matrices. Mathematische Annalen 64(2):248–263CrossRef Perron O (1907) Zur Theorie der Matrices. Mathematische Annalen 64(2):248–263CrossRef
19.
go back to reference Phizicky EM, Fields S (1995) Proteinprotein interactionsmethods for detection and analysis. Microbiol Rev 59:94–123 Phizicky EM, Fields S (1995) Proteinprotein interactionsmethods for detection and analysis. Microbiol Rev 59:94–123
20.
go back to reference M. Ptashne (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Cell Press and Blackwell Scientific M. Ptashne (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Cell Press and Blackwell Scientific
21.
go back to reference Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabsi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555CrossRef Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabsi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555CrossRef
22.
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069CrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069CrossRef
23.
go back to reference Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342CrossRef Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342CrossRef
24.
go back to reference Salwinski L, Eisenberg D (2003) Computational methods of analysis of proteinprotein interactions. Curr Opin Struct Biol 13:377–382CrossRef Salwinski L, Eisenberg D (2003) Computational methods of analysis of proteinprotein interactions. Curr Opin Struct Biol 13:377–382CrossRef
25.
go back to reference Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRef Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRef
26.
go back to reference Seidenbecher T, Laxmi TTR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during memory retrieval. Science 301:846–850CrossRef Seidenbecher T, Laxmi TTR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during memory retrieval. Science 301:846–850CrossRef
27.
go back to reference Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proc National Acad Sci 102(12):4221–4224 Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proc National Acad Sci 102(12):4221–4224
28.
go back to reference Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998CrossRef Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998CrossRef
30.
go back to reference Vogelstein B, Lane D, Levine A (2000) Surfing the p53 network. Nature 408:307–310CrossRef Vogelstein B, Lane D, Levine A (2000) Surfing the p53 network. Nature 408:307–310CrossRef
31.
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442CrossRef
Metadata
Title
Analysis of Biological Networks
Author
K. Erciyes
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-24966-7_10

Premium Partner