Skip to main content
Top
Published in: Metallurgist 9-10/2023

25-02-2023

Analysis of Trends in the Development of 3D Printing Technologies with Metal-Based Powder Materials

Authors: M. A. Sheksheev, M. A. Polyakova, A. G. Korchunov, D. V. Konstantinov

Published in: Metallurgist | Issue 9-10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents the results of the analysis of the patent situation in the field of 3D printing technologies with metals and materials based on them and the prospects for their development. In the development of the life cycle of patenting laser additive technologies in Russia in 2000–2020, three main stages can be distinguished, namely, Stage I for 2000–2008, Stage II for 2009–2015, and Stage III for 2016–2020. In terms of the applicability of patent solutions in the field of laser additive technologies, the most developed industries are the mechanical engineering and metallurgical industries. The leaders of patenting in the Russian Federation territory are BASF and Siemens (Germany) and Airbus Operation (France). The leading countries where applicants strive to obtain patents are the USA, Russia, China, Japan, and the countries of the European Union. Three main directions can be distinguished among the main trends in the development of laser additive technologies: development of basic cultivation technologies (development of effective technological modes) of products and technologies of combined processing (e.g., deformation, thermal, and thermal–deformation); development of devices and equipment for additive manufacturing, including special equipment that ensures high-quality geometric parameters and improves the performance properties of the product during the production process; and development and creation of new powder materials and their compositions with a given granulometric composition and technologies for their production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Leturia, M. Benali, S. Lagarde, I. Ronga, and K. Saleh, “Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods,” Powder Technol., 253, 406–423 (2014).CrossRef M. Leturia, M. Benali, S. Lagarde, I. Ronga, and K. Saleh, “Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods,” Powder Technol., 253, 406–423 (2014).CrossRef
2.
go back to reference M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technologies in Mechanical Engineering [in Russian], St. Petersburg, Izdatel’stvo Sankt-Peterburgskogo Gos. Politekh. Univ. (2013). M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technologies in Mechanical Engineering [in Russian], St. Petersburg, Izdatel’stvo Sankt-Peterburgskogo Gos. Politekh. Univ. (2013).
3.
go back to reference A. Ya. Travyanov, A. V. Dub, P. V. Petrovsky, and V. V. Cheverikin, “Investigation of mechanical properties of cellular structures made of corrosion-resistant steel 03X16H15M3 depending on the parameters of the unit cell,” Chern. Metal., No. 10, 59–63 (2018). A. Ya. Travyanov, A. V. Dub, P. V. Petrovsky, and V. V. Cheverikin, “Investigation of mechanical properties of cellular structures made of corrosion-resistant steel 03X16H15M3 depending on the parameters of the unit cell,” Chern. Metal., No. 10, 59–63 (2018).
4.
go back to reference M. A. Dremukhin and V. N. Nagovitsin, “The use of additive technologies in mechanical engineering for the manufacture of shapegenerating moulding tools,” Kosmich. Apparaty Tekhnol., 6, No. 1 (39), 21–28 (2022). M. A. Dremukhin and V. N. Nagovitsin, “The use of additive technologies in mechanical engineering for the manufacture of shapegenerating moulding tools,” Kosmich. Apparaty Tekhnol., 6, No. 1 (39), 21–28 (2022).
5.
go back to reference A. A. Popovich, “Additive technologies as a new method to create promising functional materials,” MiTOM, No. 1 (775), 19–25 (2020). A. A. Popovich, “Additive technologies as a new method to create promising functional materials,” MiTOM, No. 1 (775), 19–25 (2020).
6.
go back to reference Yu. V. Denisova, “Additive technologies in construction,” Stroit. Mat. Izdel., 1, No. 3, 33–42 (2018). Yu. V. Denisova, “Additive technologies in construction,” Stroit. Mat. Izdel., 1, No. 3, 33–42 (2018).
7.
go back to reference I. E. Malov, “Additive technologies in the production of molds,” Svarochn. Proizvod., No. 5, 44–48 (2021). I. E. Malov, “Additive technologies in the production of molds,” Svarochn. Proizvod., No. 5, 44–48 (2021).
8.
go back to reference A. P. Preobrazhensky and N. M. Tokareva, “Additive technologies: history, methods, materials,” Vestnik Voronezh. Instit. Vysokikh Tekhnol., No. 1 (24), 75–77 (2018). A. P. Preobrazhensky and N. M. Tokareva, “Additive technologies: history, methods, materials,” Vestnik Voronezh. Instit. Vysokikh Tekhnol., No. 1 (24), 75–77 (2018).
9.
go back to reference V. V. Vasiltsov, A. V. Bogdanov, A. G. Grigoryants, and K. I. Makarenko, “Additive laser technologies for sintering metal powders for industrial products,” Svarochn. Proizvod., No. 1, 35–43 (2021). V. V. Vasiltsov, A. V. Bogdanov, A. G. Grigoryants, and K. I. Makarenko, “Additive laser technologies for sintering metal powders for industrial products,” Svarochn. Proizvod., No. 1, 35–43 (2021).
10.
go back to reference V. V. Somonov, Study of Patent Activity in the Field of Laser Additive Technologies for Metal Processing in the Russian Federation, Proceedings of the IX Congress of Young Scientists, St. Petersburg, Izdate’stvo Univ. ITMO, 2, 227–232 (2021). V. V. Somonov, Study of Patent Activity in the Field of Laser Additive Technologies for Metal Processing in the Russian Federation, Proceedings of the IX Congress of Young Scientists, St. Petersburg, Izdate’stvo Univ. ITMO, 2, 227–232 (2021).
11.
go back to reference A. A. Dektyarev, V. N. Morozov, and A. Ya. Yafasov, “Additive technologies in shipbuilding: trends and legal regulation,” Morsk. Intellektual. Tekhnol., No. 4-4 (46), 38–49 (2019). A. A. Dektyarev, V. N. Morozov, and A. Ya. Yafasov, “Additive technologies in shipbuilding: trends and legal regulation,” Morsk. Intellektual. Tekhnol., No. 4-4 (46), 38–49 (2019).
12.
go back to reference S. Yu. Bogacheva, Comparative Analysis of Powder Bed Fusion and Directed Energy Deposition Technologies, Obrazovatel’naya Initsiativa kak Klyuchevoy Faktor Razvitiya Sfery Znaniy, Kazan, SitIvent, 293–297 (2019). S. Yu. Bogacheva, Comparative Analysis of Powder Bed Fusion and Directed Energy Deposition Technologies, Obrazovatel’naya Initsiativa kak Klyuchevoy Faktor Razvitiya Sfery Znaniy, Kazan, SitIvent, 293–297 (2019).
13.
go back to reference A. G. Kolmakov, A. Yu. Ivannikov, M. A. Kaplan, A. A. Kirsankin, and M. A. Sevostyanov, “Corrosion-resistant steels in additive manufacturing,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., 64, No. 9, 619–650 (2021). A. G. Kolmakov, A. Yu. Ivannikov, M. A. Kaplan, A. A. Kirsankin, and M. A. Sevostyanov, “Corrosion-resistant steels in additive manufacturing,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., 64, No. 9, 619–650 (2021).
14.
go back to reference V. G. Shalamov, D. A. Saveliev, and S. D. Smetanin, “Obtaining powder materials by rotary turning,” Vestnik Mashinostr., No. 11, 56–58 (2012). V. G. Shalamov, D. A. Saveliev, and S. D. Smetanin, “Obtaining powder materials by rotary turning,” Vestnik Mashinostr., No. 11, 56–58 (2012).
15.
go back to reference I. V. Romanov and R. N. Zadorozhny, “Obtaining metal powder materials for additive technologies,” Tekhnich. Servis Mashin, No. 2 (147), 155–164 (2022). I. V. Romanov and R. N. Zadorozhny, “Obtaining metal powder materials for additive technologies,” Tekhnich. Servis Mashin, No. 2 (147), 155–164 (2022).
16.
go back to reference A. G. Ermilov, V. V. Safonov, Yu. P. Bashurov, and A. V. Kulifeev, “Production of composite powder materials by chemical vapor deposition,” Tsvetn. Metal., No. 6, 51–66 (2002). A. G. Ermilov, V. V. Safonov, Yu. P. Bashurov, and A. V. Kulifeev, “Production of composite powder materials by chemical vapor deposition,” Tsvetn. Metal., No. 6, 51–66 (2002).
Metadata
Title
Analysis of Trends in the Development of 3D Printing Technologies with Metal-Based Powder Materials
Authors
M. A. Sheksheev
M. A. Polyakova
A. G. Korchunov
D. V. Konstantinov
Publication date
25-02-2023
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01442-2

Other articles of this Issue 9-10/2023

Metallurgist 9-10/2023 Go to the issue

Premium Partners