Skip to main content
Top
Published in: Metallurgist 9-10/2023

06-03-2023

Design of a Dry Slag Granulation Plant for Blast Furnace No. 5 of Severstal

Authors: S. V. Lukin, E. M. Il’icheva, A. V. Fokin

Published in: Metallurgist | Issue 9-10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article discusses the engineering and computational methodology of designing the main units of a blast-furnace slag dry granulation plant with a capacity of 1 million tons of slags per year, also intended for the recovery of slag heat. This plant can replace the slag wet granulation plant at blast furnace No. 5 at the iron and steel works of Severstal of the same capacity. The method can be used to estimate the radius and rotation frequency of the disk for spraying a slag, mechanical power to the disk drive, granulation chamber (GC) diameter that ensures the solidification of slag droplets, temperature of slag granules at the outlet of the GC, amount of heat transferred by convection to the air and by radiation to the walls of the GC, flow rate of air supplied to cool the slag, changes in the temperatures of the slag and air on fluidized bed grates (FBGs), size of these grates, loss of air pressure in the plant, and power consumption for the fan drive, amount of slag heat disposed of in the plant, and possible generation of electricity due to it. Recommendations on the shape of the side wall of the GC are given. The findings revealed that for a plant with a capacity of 1 million tons of slags per year with a diameter of granules no more than 2 mm, the disk radius should be approximately 0.2 m, with a rotation frequency of 500 rpm and disk drive power of 5.1 kW. The required diameter of the GC at the flight speed of slag droplets of 10.4 m/s is approximately 14.4 m. The slag is cooled in the GC from 1500℃ to 1030℃ and then to 150℃ on three FBGs. Cooling air with a flow rate of 34.8 nm3/s in FBGs is heated to 640℃ and then to 800℃ in the GC. The fan drive power for is approximately 40 kW. In the plant, approximately 43 MW of heat can be disposed for steam generation, and up to 18.5 MW of electricity can be obtained due to it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. J. Pickering, N. Hay, T. F. Roylance, and G. H. Thomas, “New process for dry granulation and heat recovery from molten slag,” Ironmak. Steelmak., 12, No. 1, 14–21 (1985). S. J. Pickering, N. Hay, T. F. Roylance, and G. H. Thomas, “New process for dry granulation and heat recovery from molten slag,” Ironmak. Steelmak., 12, No. 1, 14–21 (1985).
2.
go back to reference D. Xie, S. Jahanshali, and T. Norgate, Dry Granulation to Provide a Sustainable Option for Slag Treatment, In Proc. Sustainable Mining Conf., 22–28 (Kalgoorlie, Wa, Australia, 17–19 August, 2010). D. Xie, S. Jahanshali, and T. Norgate, Dry Granulation to Provide a Sustainable Option for Slag Treatment, In Proc. Sustainable Mining Conf., 22–28 (Kalgoorlie, Wa, Australia, 17–19 August, 2010).
3.
go back to reference H. Kappes and D. Michels, “Dry granulation of slag with energy recovery, from the idea generation to a pilot plant,” Chern. Metal., No. 5 (1001), 46–52 (2015). H. Kappes and D. Michels, “Dry granulation of slag with energy recovery, from the idea generation to a pilot plant,” Chern. Metal., No. 5 (1001), 46–52 (2015).
4.
go back to reference H. Zhang, H. Wang, X. Zhu, Y. Qiu, K. Li, R. Chen, and Q. Liao, “A review of waste heat recovery technologies towards molten slag in steel industry,” Appl. Energy, 112, 956–966 (2013).CrossRef H. Zhang, H. Wang, X. Zhu, Y. Qiu, K. Li, R. Chen, and Q. Liao, “A review of waste heat recovery technologies towards molten slag in steel industry,” Appl. Energy, 112, 956–966 (2013).CrossRef
5.
go back to reference P. Yu, S. Wang, Y. Li, and G. Xu, A Review of Granulation Process for Blast Furnace Slag, MATEC Web of Conferences, The 3rd International Conference on Industrial Engineering and Applications ― ICIEA (Hong Kong, April 28–30, 2016), 68, 06–07 (2016). P. Yu, S. Wang, Y. Li, and G. Xu, A Review of Granulation Process for Blast Furnace Slag, MATEC Web of Conferences, The 3rd International Conference on Industrial Engineering and Applications ― ICIEA (Hong Kong, April 28–30, 2016), 68, 06–07 (2016).
6.
go back to reference S. V. Filatov, I. F. Kurunov, V. N. Titov, and S. A. Zagainov, “Implementation of energy-efficient solutions for iron smelting at NLMK,” Metallurg, No. 4, 25–28 (2019). S. V. Filatov, I. F. Kurunov, V. N. Titov, and S. A. Zagainov, “Implementation of energy-efficient solutions for iron smelting at NLMK,” Metallurg, No. 4, 25–28 (2019).
7.
go back to reference O. P. Onorin, A. A. Polinov, A. V. Pavlov, N. A. Spirin, and I. A. Gurin, “On the possibility of using the heat balance of blastfurnace smelting to control heat losses,” Metallurg, No. 3, 30–34 (2018). O. P. Onorin, A. A. Polinov, A. V. Pavlov, N. A. Spirin, and I. A. Gurin, “On the possibility of using the heat balance of blastfurnace smelting to control heat losses,” Metallurg, No. 3, 30–34 (2018).
8.
go back to reference E. G. Urbanovich, V. A. Panov, V. F. Voropaev, and V. I. Basov, “Heat losses with liquid blast-furnace slags and technical solutions for their reduction,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., No. 7 (1303), 51–56 (2008). E. G. Urbanovich, V. A. Panov, V. F. Voropaev, and V. I. Basov, “Heat losses with liquid blast-furnace slags and technical solutions for their reduction,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., No. 7 (1303), 51–56 (2008).
9.
go back to reference L. A. Zainullin, D. V. Mekhryakov, V. G. Greznev, and Kai Chen, “Experience in the implementation of plants for furnace slag granulation according to the VNIIMT technology at blast furnaces with a capacity of 1260 and 4150 m3 in China,” Stal’, No. 3, 35–38 (2015). L. A. Zainullin, D. V. Mekhryakov, V. G. Greznev, and Kai Chen, “Experience in the implementation of plants for furnace slag granulation according to the VNIIMT technology at blast furnaces with a capacity of 1260 and 4150 m3 in China,” Stal’, No. 3, 35–38 (2015).
10.
go back to reference A. S. Kadyrov, V. A. Kunaev, and I. V. Georgiadi, “Prospects for the processing of ferrous metallurgy waste on the example of ArcelorMittal Temirtau,” Metallurg, No. 1, 29–34 (2018). A. S. Kadyrov, V. A. Kunaev, and I. V. Georgiadi, “Prospects for the processing of ferrous metallurgy waste on the example of ArcelorMittal Temirtau,” Metallurg, No. 1, 29–34 (2018).
11.
go back to reference S. V. Lukin, N. I. Shestakov, and E. M. Ilyicheva, “Heat transfer in the granulation chamber of a dry slag granulation unit,” Metallurg, No. 8, 36–41 (2019). S. V. Lukin, N. I. Shestakov, and E. M. Ilyicheva, “Heat transfer in the granulation chamber of a dry slag granulation unit,” Metallurg, No. 8, 36–41 (2019).
12.
go back to reference S. V. Lukin, A. V. Fokin, and E. M. Il’icheva, “Heat transfer on fluidized bed grates in a dry slag granulation unit,” Metallurg, No. 4, 16–20 (2020). S. V. Lukin, A. V. Fokin, and E. M. Il’icheva, “Heat transfer on fluidized bed grates in a dry slag granulation unit,” Metallurg, No. 4, 16–20 (2020).
13.
go back to reference S. V. Lukin, N. I. Shestakov, E. M. Il’icheva, and A. V. Fokin, “Determination of the geometric and operating parameters of a device for spraying liquid slag in a dry slag granulation unit,” Metallurg, No. 3, 19–24 (2021). S. V. Lukin, N. I. Shestakov, E. M. Il’icheva, and A. V. Fokin, “Determination of the geometric and operating parameters of a device for spraying liquid slag in a dry slag granulation unit,” Metallurg, No. 3, 19–24 (2021).
14.
go back to reference D. N. Togobitskaya, A. I. Belkova, and A. F. Khamkhotko, “Experience in creation and implementation of a system for monitoring and control of the slag mode of blast-furnace smelting in the charge and technological conditions of Ukrainian plants,” Fundamental and Applied Problems of Ferrous Metallurgy, Proceedings, Dnepropetrovsk, IChM NAN Ukraine, 19, 100–112 (2009). D. N. Togobitskaya, A. I. Belkova, and A. F. Khamkhotko, “Experience in creation and implementation of a system for monitoring and control of the slag mode of blast-furnace smelting in the charge and technological conditions of Ukrainian plants,” Fundamental and Applied Problems of Ferrous Metallurgy, Proceedings, Dnepropetrovsk, IChM NAN Ukraine, 19, 100–112 (2009).
15.
go back to reference E. I. Kazantsev, Industrial Furnaces, Reference Book [in Russian], Metallurgiya, Moscow (1975). E. I. Kazantsev, Industrial Furnaces, Reference Book [in Russian], Metallurgiya, Moscow (1975).
16.
go back to reference B. P. Yuriev, “Study of the thermophysical properties of blast-furnace slags during their heat treatment,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., No. 11, 5–10 (2014). B. P. Yuriev, “Study of the thermophysical properties of blast-furnace slags during their heat treatment,” Izv. Vyssh. Ucheb. Zav. Chern. Metallurg., No. 11, 5–10 (2014).
Metadata
Title
Design of a Dry Slag Granulation Plant for Blast Furnace No. 5 of Severstal
Authors
S. V. Lukin
E. M. Il’icheva
A. V. Fokin
Publication date
06-03-2023
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01441-3

Other articles of this Issue 9-10/2023

Metallurgist 9-10/2023 Go to the issue

Premium Partners