Skip to main content
Top
Published in: Journal of Computational Electronics 3/2020

13-06-2020

Analytical modeling of a high-K underlap dielectric- and charge-modulated silicon-on-nothing FET-based biosensor

Authors: Khuraijam Nelson Singh, Pranab Kishore Dutta

Published in: Journal of Computational Electronics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Field-effect transistor (FET)-based biosensors with stacked gate oxides provide low leakage current and high sensitivity. However, an undesirable interfacial layer of silicate and silicon dioxide is formed in between the stacked oxides. In this paper, an underlap silicon-on-nothing FET-based biosensor with high-K gate oxide is presented for the detection of charged biomolecules, thereby removing the unwanted interfacial layer while preserving the sensitivity of the device. The study is based on a surface potential model for the proposed device, which is developed from Poisson’s equation by incorporating the dielectric and charge properties of the biomolecules. A threshold voltage model is then developed to examine the sensitivity of the device. The change in the device characteristics upon the accumulation of biomolecules is investigated to understand the impact of the biomolecules on the behavior and sensitivity of the device. The results show that the proposed device is highly sensitive to charged biomolecules, and that the charge of the biomolecules is more important than their dielectric properties for modulating the device characteristics. The results indicate that the proposed device has potential to be chosen as a new type of highly sensitive, nanosize, label-free biosensor with no unwanted interfacial layer. The analytical model is validated against two-dimensional (2-D) numerical simulation data obtained from ATLAS (SILVACO).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)CrossRef Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)CrossRef
2.
go back to reference Rahman, E., Shadman, A., Ahmed, I., Khan, S.U.Z., Khosru, Q.D.M.: A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor. Nanotechnology 29(23), 235203 (2018)CrossRef Rahman, E., Shadman, A., Ahmed, I., Khan, S.U.Z., Khosru, Q.D.M.: A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor. Nanotechnology 29(23), 235203 (2018)CrossRef
3.
go back to reference Dwivedi, P., Kranti, A.: Dielectric modulated biosensor architecture: tunneling or accumulation based transistor? IEEE Sens. J. 18(8), 3228–3235 (2018)CrossRef Dwivedi, P., Kranti, A.: Dielectric modulated biosensor architecture: tunneling or accumulation based transistor? IEEE Sens. J. 18(8), 3228–3235 (2018)CrossRef
4.
go back to reference Chandan, B.V., Nigam, K., Sharma, D.: Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection. Micro Nano Lett. 13(4), 452–456 (2018)CrossRef Chandan, B.V., Nigam, K., Sharma, D.: Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection. Micro Nano Lett. 13(4), 452–456 (2018)CrossRef
5.
go back to reference Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRef Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRef
6.
go back to reference Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRef Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRef
7.
go back to reference Lee, K.-W., Choi, S.-J., Ahn, J.-H., Moon, D.-I., Park, T.J., Lee, S.Y., Choi, Y.-K.: An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)CrossRef Lee, K.-W., Choi, S.-J., Ahn, J.-H., Moon, D.-I., Park, T.J., Lee, S.Y., Choi, Y.-K.: An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)CrossRef
8.
go back to reference Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRef Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRef
9.
go back to reference Pratap, Y., Kumar, M., Kabra, S., Haldar, S., Gupta, R.S., Gupta, M.: Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17(1), 288–296 (2018)CrossRef Pratap, Y., Kumar, M., Kabra, S., Haldar, S., Gupta, R.S., Gupta, M.: Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17(1), 288–296 (2018)CrossRef
10.
go back to reference Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16(3), 556–567 (2017)CrossRef Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16(3), 556–567 (2017)CrossRef
11.
go back to reference Chaudhry, A.: NanoScale effects: gate oxide leakage currents. In: Fundamentals of Nanoscaled Field Effect Transistors, pp. 25–36. Springer, New York (2013) Chaudhry, A.: NanoScale effects: gate oxide leakage currents. In: Fundamentals of Nanoscaled Field Effect Transistors, pp. 25–36. Springer, New York (2013)
12.
go back to reference Basak, R., Maiti, B., Mallik, A.: Effect of the presence of trap states in oxides in modeling gate leakage current in advanced MOSFET with multi-oxide stack. Superlattices Microstruct. 129, 193–201 (2019)CrossRef Basak, R., Maiti, B., Mallik, A.: Effect of the presence of trap states in oxides in modeling gate leakage current in advanced MOSFET with multi-oxide stack. Superlattices Microstruct. 129, 193–201 (2019)CrossRef
13.
go back to reference Thriveni, G., Ghosh, K.: Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers. Mater. Res. Express 6(8), 085062 (2019)CrossRef Thriveni, G., Ghosh, K.: Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers. Mater. Res. Express 6(8), 085062 (2019)CrossRef
14.
go back to reference Zhang, J., Yuan, J.S., Ma, Y.: Modeling short channel effect on high-K and stacked-gate MOSFETs. Solid State Electron. 44(11), 2089–2091 (2000)CrossRef Zhang, J., Yuan, J.S., Ma, Y.: Modeling short channel effect on high-K and stacked-gate MOSFETs. Solid State Electron. 44(11), 2089–2091 (2000)CrossRef
15.
go back to reference Liu, C., Xu, J., Liu, L., Lu, H., Huang, Y.: A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-K gate dielectric. J. Semicond. 37(2), 024004 (2016)CrossRef Liu, C., Xu, J., Liu, L., Lu, H., Huang, Y.: A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-K gate dielectric. J. Semicond. 37(2), 024004 (2016)CrossRef
16.
go back to reference Wei-Yuan, L., Taur, Y.: On the scaling limit of ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 53(5), 1137–1141 (2006)CrossRef Wei-Yuan, L., Taur, Y.: On the scaling limit of ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 53(5), 1137–1141 (2006)CrossRef
17.
go back to reference Kumar, M.J., Chaudhry, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)CrossRef Kumar, M.J., Chaudhry, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)CrossRef
18.
go back to reference Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108(7), 074508 (2010)CrossRef Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108(7), 074508 (2010)CrossRef
19.
go back to reference Khuraijam Nelson, S., Dutta, P.K.: Comparative analysis of underlapped silicon on insulator and underlapped silicon on nothing dielectric and charge modulated FET based biosensors. In: 2019 Devices for Integrated Circuit (DevIC). Presented at the 2019 Devices for Integrated Circuit (DevIC), pp. 231–235. IEEE, Kalyani (2019) Khuraijam Nelson, S., Dutta, P.K.: Comparative analysis of underlapped silicon on insulator and underlapped silicon on nothing dielectric and charge modulated FET based biosensors. In: 2019 Devices for Integrated Circuit (DevIC). Presented at the 2019 Devices for Integrated Circuit (DevIC), pp. 231–235. IEEE, Kalyani (2019)
20.
go back to reference Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J.L., Dutartre, D., Ribot, P., Lenoble, D., Pantel, R., Monfray, S.: Silicon-on-Nothing (SON)-an innovative process for advanced CMOS. IEEE Trans. Electron Devices 47(11), 2179–2187 (2000)CrossRef Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J.L., Dutartre, D., Ribot, P., Lenoble, D., Pantel, R., Monfray, S.: Silicon-on-Nothing (SON)-an innovative process for advanced CMOS. IEEE Trans. Electron Devices 47(11), 2179–2187 (2000)CrossRef
21.
go back to reference Pretet, J., Monfray, S., Cristoloveanu, S., Skotnicki, T.: Silicon-on-Nothing MOSFETs: performance, short-channel effects, and backgate coupling. IEEE Trans. Electron Devices 51(2), 240–245 (2004)CrossRef Pretet, J., Monfray, S., Cristoloveanu, S., Skotnicki, T.: Silicon-on-Nothing MOSFETs: performance, short-channel effects, and backgate coupling. IEEE Trans. Electron Devices 51(2), 240–245 (2004)CrossRef
22.
go back to reference Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004)CrossRef Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004)CrossRef
23.
go back to reference Trivedi, V.P., Fossum, J.G.: Nanoscale FD/SOI CMOS: thick or thin BOX? IEEE Electron Device Lett. 26(1), 26–28 (2005)CrossRef Trivedi, V.P., Fossum, J.G.: Nanoscale FD/SOI CMOS: thick or thin BOX? IEEE Electron Device Lett. 26(1), 26–28 (2005)CrossRef
24.
go back to reference Dutta, P.K., Manna, B., Sarkar, S.K.: Analytical modeling of linearly graded alloy material gate recessed ultra thin body source/drain SON MOSFET. Superlattices Microstruct. 77, 64–75 (2015)CrossRef Dutta, P.K., Manna, B., Sarkar, S.K.: Analytical modeling of linearly graded alloy material gate recessed ultra thin body source/drain SON MOSFET. Superlattices Microstruct. 77, 64–75 (2015)CrossRef
25.
go back to reference Banerjee, P., Sarkar, S.K.: 3-D analytical modeling of dual-material triple-gate silicon-on-nothing MOSFET. IEEE Trans. Electron Devices 64(2), 368–375 (2017)CrossRef Banerjee, P., Sarkar, S.K.: 3-D analytical modeling of dual-material triple-gate silicon-on-nothing MOSFET. IEEE Trans. Electron Devices 64(2), 368–375 (2017)CrossRef
26.
go back to reference Pan, C.H., Kwo, J., Lee, K.Y., Lee, W.C., Chu, L.K., Huang, M.L., Lee, Y.J., Hong, M.: Si metal-oxide-semiconductor devices with high K HfO2 fabricated using a novel MBE template approach followed by atomic layer deposition. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26(3), 1178–1181 (2008)CrossRef Pan, C.H., Kwo, J., Lee, K.Y., Lee, W.C., Chu, L.K., Huang, M.L., Lee, Y.J., Hong, M.: Si metal-oxide-semiconductor devices with high K HfO2 fabricated using a novel MBE template approach followed by atomic layer deposition. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26(3), 1178–1181 (2008)CrossRef
27.
go back to reference Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef
28.
go back to reference Singh, S., Raj, B., Vishvakarma, S.K.: Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio-Sens. Res. 18, 31–36 (2018)CrossRef Singh, S., Raj, B., Vishvakarma, S.K.: Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio-Sens. Res. 18, 31–36 (2018)CrossRef
29.
go back to reference Goel, E., Kumar, S., Singh, K., Singh, B., Kumar, M., Jit, S.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63(3), 966–973 (2016)CrossRef Goel, E., Kumar, S., Singh, K., Singh, B., Kumar, M., Jit, S.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63(3), 966–973 (2016)CrossRef
30.
go back to reference Mohapatra, N.R., Desai, M.P., Narendra, S.G., Rao, V.R.: The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance. IEEE Trans. Electron Devices 49(5), 826–831 (2002)CrossRef Mohapatra, N.R., Desai, M.P., Narendra, S.G., Rao, V.R.: The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance. IEEE Trans. Electron Devices 49(5), 826–831 (2002)CrossRef
31.
go back to reference ATLAS User’s Manual: SILVACO Int., Santa Clara (2015) ATLAS User’s Manual: SILVACO Int., Santa Clara (2015)
32.
go back to reference Ahn, J.-H., Choi, S.-J., Im, M., Kim, S., Kim, C.-H., Kim, J.-Y., Park, T.J., Lee, S.Y., Choi, Y.-K.: Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors. Appl. Phys. Lett. 111(11), 113701 (2017)CrossRef Ahn, J.-H., Choi, S.-J., Im, M., Kim, S., Kim, C.-H., Kim, J.-Y., Park, T.J., Lee, S.Y., Choi, Y.-K.: Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors. Appl. Phys. Lett. 111(11), 113701 (2017)CrossRef
33.
go back to reference Cuervo, A., Dans, P.D., Carrascosa, J.L., Orozco, M., Gomila, G., Fumagalli, L.: Direct measurement of the dielectric polarization properties of DNA. Proc. Natl. Acad. Sci. 111(35), E3624–E3630 (2014)CrossRef Cuervo, A., Dans, P.D., Carrascosa, J.L., Orozco, M., Gomila, G., Fumagalli, L.: Direct measurement of the dielectric polarization properties of DNA. Proc. Natl. Acad. Sci. 111(35), E3624–E3630 (2014)CrossRef
34.
go back to reference Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field-effect transistor: a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRef Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field-effect transistor: a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRef
35.
go back to reference Ajay Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRef Ajay Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRef
36.
go back to reference Buvaneswari, B., Balamurugan, N.B.: 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. AEU Int. J. Electron. Commun. 99, 193–200 (2019)CrossRef Buvaneswari, B., Balamurugan, N.B.: 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. AEU Int. J. Electron. Commun. 99, 193–200 (2019)CrossRef
Metadata
Title
Analytical modeling of a high-K underlap dielectric- and charge-modulated silicon-on-nothing FET-based biosensor
Authors
Khuraijam Nelson Singh
Pranab Kishore Dutta
Publication date
13-06-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01511-8

Other articles of this Issue 3/2020

Journal of Computational Electronics 3/2020 Go to the issue