Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 4/2021

10-03-2021 | Original Article

Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua

Authors: Gianluca Rizzi, Geralf Hütter, Angela Madeo, Patrizio Neff

Published in: Continuum Mechanics and Thermodynamics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the cylindrical bending problem for an infinite plate as modeled with a family of generalized continuum models, including the micromorphic approach. The models allow to describe length scale effects in the sense that thinner specimens are comparatively stiffer. We provide the analytical solution for each case and exhibits the predicted bending stiffness. The relaxed micromorphic continuum shows bounded bending stiffness for arbitrary thin specimens, while classical micromorphic continuum or gradient elasticity as well as Cosserat models (Neff et al. in Acta Mechanica 211(3–4):237–249, 2010) exhibit unphysical unbounded bending stiffness for arbitrary thin specimens. This finding highlights the advantage of using the relaxed micromorphic model, which has a definite limit stiffness for small samples and which aids in identifying the relevant material parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here are reported the macroscopic 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the Young modulus
\(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}} = 2\mu _{\hbox { macro}}\left( 1+\nu _{\hbox { macro}}\right) \), and the bulk modulus \(\kappa _{\hbox { macro}} = \frac{2\mu _{\hbox { macro}} + 3\lambda _{\hbox { macro}}}{3}\).
 
2
Note that under the plane stress hypothesis the first Lamé parameter becomes \({\widehat{\lambda }}_{\hbox { macro}} = \frac{2 \, \lambda _{\hbox { macro}} \, \mu _{\hbox { macro}}}{\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}}\) , while the shear modulus \({\widehat{\mu }}_{\hbox { macro}} = \mu _{\hbox { macro}}\) , the Young modulus \({\widehat{E}} = E = \frac{\mu _{\hbox { macro}}(3\lambda _{\hbox { macro}} + 2\mu _{\hbox { macro}})}{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\) , and the Poisson’s ratio \({\widehat{\nu }} = \mu _{\hbox { macro}} = \frac{\lambda _{\hbox { macro}}}{2\lambda _{ \hbox {macro}}+2\mu _{\hbox { macro}}}\) do not change. It is also reported here the more used bending stiffness expression \({\widehat{\lambda }}_{\hbox { macro}} + 2\mu _{\hbox { macro}} = \frac{E_{\hbox { macro}}}{1- \nu _{\hbox { macro}}^2}\) .
 
3
Are here reported the 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the 3D Young modulus \(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\), and the micro and the mesoexpression of the Poisson’s ratio in plane stress \(\nu _{ \hbox {micro}} = \frac{\lambda _{\hbox { micro}}}{2\left( \lambda _{\hbox { micro}} + \mu _{\hbox { micro}}\right) }\) and the \(\nu _e = \frac{\lambda _e}{2\left( \lambda _e + \mu _e\right) }\), respectively.
 
4
\(\text {sech}(x) := \frac{1}{\text {cosh}(x)} = \frac{2}{e^{x}+e^{-x}}\).
 
5
Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are the meso- and the micro-scale 3D bulk modulus.
 
6
The equivalent formulation in terms of a rotation vector \(\vartheta :=\hbox {axl} ({\varvec{A}}) \in {\mathbb {R}}^3\) is given in appendix D of [42].
 
7
Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are he meso- and the micro-scale 3D bulk modulus.
 
8
Note that \(\left\Vert \hbox {Curl} \left( \omega \varvec{\mathbb {1}}\right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = \left\Vert \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = 2 \left\Vert \hbox {axl} \, \left( \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right) \right\Vert ^2_{{\mathbb {R}}^3} = 2 \left\Vert \varvec{\hbox {D}} \omega \right\Vert ^2_{{\mathbb {R}}^3}\)
 
Literature
1.
go back to reference Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Zeitschrift für angewandte Mathematik und Mechanik 89(4), 242–256 (2009)ADSMathSciNetCrossRef Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Zeitschrift für angewandte Mathematik und Mechanik 89(4), 242–256 (2009)ADSMathSciNetCrossRef
2.
go back to reference Altenbach, H., Eremeyev, V.A.: Generalized Continua-From the Theory to Engineering Applications, vol. 541. Springer, Berlin (2012) Altenbach, H., Eremeyev, V.A.: Generalized Continua-From the Theory to Engineering Applications, vol. 541. Springer, Berlin (2012)
3.
go back to reference Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)ADSCrossRef Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)ADSCrossRef
4.
go back to reference Arroyo, M., Belytschko, T.: Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6), 455–469 (2005)MathSciNetCrossRef Arroyo, M., Belytschko, T.: Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6), 455–469 (2005)MathSciNetCrossRef
5.
go back to reference Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)CrossRef Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)CrossRef
6.
go back to reference Brcic, M., Canadija, M., Brnic, J.: Estimation of material properties of nanocomposite structures. Meccanica 48(9), 2209–2220 (2013)CrossRef Brcic, M., Canadija, M., Brnic, J.: Estimation of material properties of nanocomposite structures. Meccanica 48(9), 2209–2220 (2013)CrossRef
7.
go back to reference Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40(4–6), 485–503 (2005)CrossRef Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40(4–6), 485–503 (2005)CrossRef
8.
go back to reference Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)CrossRef Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)CrossRef
9.
go back to reference d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 39, 299–329 (2020)MathSciNetCrossRef d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 39, 299–329 (2020)MathSciNetCrossRef
10.
go back to reference De Cicco, S., Nappa, L.: Torsion and flexure of microstretch elastic circular cylinders. Int. J. Eng. Sci. 35(6), 573–583 (1997)CrossRef De Cicco, S., Nappa, L.: Torsion and flexure of microstretch elastic circular cylinders. Int. J. Eng. Sci. 35(6), 573–583 (1997)CrossRef
11.
go back to reference Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH
12.
go back to reference Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)MATH Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)MATH
13.
go back to reference Forest, S.: Micromorphic approach to materials with internal length. In: Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2018) Forest, S.: Micromorphic approach to materials with internal length. In: Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2018)
14.
go back to reference Forest, S.: Micromorphic approach to gradient plasticity and damage. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 499–546. Springer, Berlin (2019) Forest, S.: Micromorphic approach to gradient plasticity and damage. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 499–546. Springer, Berlin (2019)
15.
16.
go back to reference Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)ADSCrossRef Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)ADSCrossRef
17.
go back to reference Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)MathSciNetCrossRef Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)MathSciNetCrossRef
18.
go back to reference Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef
19.
go back to reference Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories. arXiv preprint arXiv:1606.02954 (2016) Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories. arXiv preprint arXiv:​1606.​02954 (2016)
20.
go back to reference Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)CrossRef Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)CrossRef
21.
go back to reference Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Continuum Mech. Thermodyn. 27(6), 1059–1072 (2015)ADSMathSciNetCrossRef Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Continuum Mech. Thermodyn. 27(6), 1059–1072 (2015)ADSMathSciNetCrossRef
22.
go back to reference Ieşan, D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9(11), 1047–1060 (1971)CrossRef Ieşan, D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9(11), 1047–1060 (1971)CrossRef
23.
go back to reference Ieşan, D., Nappa, L.: Saint-Venant’s problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)MathSciNetCrossRef Ieşan, D., Nappa, L.: Saint-Venant’s problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)MathSciNetCrossRef
24.
go back to reference Lakes, R.: Elastic freedom in cellular solids and composite materials. In: Mathematics of Multiscale Materials, pp. 129–153. Springer, Berlin (1998) Lakes, R.: Elastic freedom in cellular solids and composite materials. In: Mathematics of Multiscale Materials, pp. 129–153. Springer, Berlin (1998)
25.
go back to reference Lakes, R., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) ADSCrossRef Lakes, R., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) ADSCrossRef
26.
go back to reference Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18(9), 2572–2580 (1983)ADSCrossRef Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18(9), 2572–2580 (1983)ADSCrossRef
27.
go back to reference Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum Models Mater. Microstruct. 70, 1–25 (1995)MATH Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum Models Mater. Microstruct. 70, 1–25 (1995)MATH
28.
go back to reference Lewintan, P., Müller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. arXiv preprint, arXiv:2011.10573 (2020) Lewintan, P., Müller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. arXiv preprint, arXiv:​2011.​10573 (2020)
29.
go back to reference Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef
30.
go back to reference Madeo, A., Ghiba, I.D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur. J. Mech. A/Solids 59, 294–322 (2016)ADSMathSciNetCrossRef Madeo, A., Ghiba, I.D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur. J. Mech. A/Solids 59, 294–322 (2016)ADSMathSciNetCrossRef
32.
go back to reference Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. Math. Mech. Solids 23(1), 3–42 (2018)MathSciNetCrossRef Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. Math. Mech. Solids 23(1), 3–42 (2018)MathSciNetCrossRef
33.
go back to reference Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Zeitschrift für Angewandte Mathematik und Mechanik, 97(12):1524–1554 (2017) Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Zeitschrift für Angewandte Mathematik und Mechanik, 97(12):1524–1554 (2017)
34.
go back to reference Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker-Verlag, Herzogenrath (2004) Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker-Verlag, Herzogenrath (2004)
35.
go back to reference Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139, 269–298 (2020)MathSciNetCrossRef Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139, 269–298 (2020)MathSciNetCrossRef
36.
go back to reference Neff, P., Ghiba, I.D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv preprint, arXiv:1504.00448 (2015) Neff, P., Ghiba, I.D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv preprint, arXiv:​1504.​00448 (2015)
37.
go back to reference Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetCrossRef Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetCrossRef
38.
go back to reference Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)ADSMathSciNetCrossRef Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)ADSMathSciNetCrossRef
39.
go back to reference Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)CrossRef Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)CrossRef
40.
go back to reference Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)CrossRef Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)CrossRef
41.
go back to reference Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot. Autom. Lett. 5(3), 4006–4013 (2020)CrossRef Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot. Autom. Lett. 5(3), 4006–4013 (2020)CrossRef
42.
go back to reference Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). arXiv preprint (2020) Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). arXiv preprint (2020)
43.
go back to reference Rizzi, G.,Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 1–18 (2021) Rizzi, G.,Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 1–18 (2021)
44.
go back to reference Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)CrossRef Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)CrossRef
45.
go back to reference Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)CrossRef Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)CrossRef
46.
go back to reference Taliercio, A.: Torsion of micropolar hollow circular cylinders. Mech. Res. Commun. 37(4), 406–411 (2010)CrossRef Taliercio, A.: Torsion of micropolar hollow circular cylinders. Mech. Res. Commun. 37(4), 406–411 (2010)CrossRef
47.
go back to reference Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)ADSCrossRef Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)ADSCrossRef
48.
go back to reference Waseem, A., Beveridge, A.J., Wheel, M.A., Nash, D.H.: The influence of void size on the micropolar constitutive properties of model heterogeneous materials. Eur. J. Mech. A/Solids 40, 148–157 (2013)ADSMathSciNetCrossRef Waseem, A., Beveridge, A.J., Wheel, M.A., Nash, D.H.: The influence of void size on the micropolar constitutive properties of model heterogeneous materials. Eur. J. Mech. A/Solids 40, 148–157 (2013)ADSMathSciNetCrossRef
49.
go back to reference Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef
50.
go back to reference Zhang, L., Binbin, L., Zhou, S., Wang, B., Xue, Y.: An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2), 251–262 (2017)MathSciNetCrossRef Zhang, L., Binbin, L., Zhou, S., Wang, B., Xue, Y.: An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2), 251–262 (2017)MathSciNetCrossRef
Metadata
Title
Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua
Authors
Gianluca Rizzi
Geralf Hütter
Angela Madeo
Patrizio Neff
Publication date
10-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 4/2021
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-00984-7

Other articles of this Issue 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Go to the issue

Premium Partners