Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Anisotropic Nanofillers in TPE

Authors : Abhijit Bandyopadhyay, Poulomi Dasgupta, Sayan Basak

Published in: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The year 2013 saw a rapid boom in the area of the thermoplastic Elastomers recording a market share of more than 19.6 million metric tons and has predicted that the figure should be going beyond 29 million metric tons by 2020 [1]. There are two most bolstered reasons as to why the polymer industry is continuously expanding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Song, K., Zhang, Y., Meng, J., Green, E.C., Tajaddod, N., Li, H.: Structural polymer-based carbon nanotube composite fibers: understanding the processing_structure-performance relationship. Materials 6(6), 2543–2577 (2013)CrossRef Song, K., Zhang, Y., Meng, J., Green, E.C., Tajaddod, N., Li, H.: Structural polymer-based carbon nanotube composite fibers: understanding the processing_structure-performance relationship. Materials 6(6), 2543–2577 (2013)CrossRef
2.
go back to reference Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A.: A short review on rubber/clay nanocomposites with emphasis on mechanical properties. PolymEng Sci. 47, 1956–1974 (2007) Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A.: A short review on rubber/clay nanocomposites with emphasis on mechanical properties. PolymEng Sci. 47, 1956–1974 (2007)
3.
go back to reference Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H., Zhao, S.H.: Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym. Adv. Technol. 19, 1543–1549 (2008) Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H., Zhao, S.H.: Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym. Adv. Technol. 19, 1543–1549 (2008)
4.
go back to reference Bhowmick, A.K., Stephens, H.: Handbook of Elastomers. CRC Press, New York, NY (2000)CrossRef Bhowmick, A.K., Stephens, H.: Handbook of Elastomers. CRC Press, New York, NY (2000)CrossRef
5.
go back to reference Chandra, R., Singh, S., Gupta, K.: Damping studies in fiber-reinforced composites-a review. Compos. Struct. 46(1), 41–51 (1999)CrossRef Chandra, R., Singh, S., Gupta, K.: Damping studies in fiber-reinforced composites-a review. Compos. Struct. 46(1), 41–51 (1999)CrossRef
6.
go back to reference Thomas, S., Stephen, R.: Rubber Nanocomposites: Preparation, Properties and Applications. Wiley (2010) Thomas, S., Stephen, R.: Rubber Nanocomposites: Preparation, Properties and Applications. Wiley (2010)
7.
go back to reference Kato, A., Ikeda, Y., Kohjiya, S.: Carbon black-filled natural rubber composites: physical chemistry and reinforcing mechanism. Polym. Compos. 1, 515–543 (2012)CrossRef Kato, A., Ikeda, Y., Kohjiya, S.: Carbon black-filled natural rubber composites: physical chemistry and reinforcing mechanism. Polym. Compos. 1, 515–543 (2012)CrossRef
8.
go back to reference Liu, X., Wang, L., Zhao, L., He, H., Shao, X., Fang, G., Wan, Z., Zeng, R.: Polym. Compos. 39(4), 1006–1022 (2018)CrossRef Liu, X., Wang, L., Zhao, L., He, H., Shao, X., Fang, G., Wan, Z., Zeng, R.: Polym. Compos. 39(4), 1006–1022 (2018)CrossRef
9.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306(5696), 666–669 (2004)CrossRef
10.
go back to reference Barker, A., Du, X., Skachko, I., Andrei, E.Y.: Nat. Nanotechnol. 3(8), 491–495 (2008)CrossRef Barker, A., Du, X., Skachko, I., Andrei, E.Y.: Nat. Nanotechnol. 3(8), 491–495 (2008)CrossRef
11.
go back to reference King, A., Johnson, G., Engelberg, D., Ludwig, W.: Marrow J. Science 321(5887), 382–385 (2008)CrossRef King, A., Johnson, G., Engelberg, D., Ludwig, W.: Marrow J. Science 321(5887), 382–385 (2008)CrossRef
12.
go back to reference Medalia, A.: Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 51(3), 437–523 (1978)CrossRef Medalia, A.: Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 51(3), 437–523 (1978)CrossRef
13.
go back to reference Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction, vol. 7. Wiley, New York, NY (2007) Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction, vol. 7. Wiley, New York, NY (2007)
14.
go back to reference Adewole, J.K., Al-Mubaiyedh, U.A., Ul-Hamid, A., Al-Juhani, A.A., Hussein, I.A.: Bulk and surface mechanical properties of clay modified HDPE used in liner applications. Can. J. Chem. Eng. 90, 1066–1078 (2012)CrossRef Adewole, J.K., Al-Mubaiyedh, U.A., Ul-Hamid, A., Al-Juhani, A.A., Hussein, I.A.: Bulk and surface mechanical properties of clay modified HDPE used in liner applications. Can. J. Chem. Eng. 90, 1066–1078 (2012)CrossRef
15.
go back to reference Trckova, M., Matlova, L., Dvorska, L.: Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. A review. Vet Med-UZPI (Czech Republic) 49, 389–399 (2004)CrossRef Trckova, M., Matlova, L., Dvorska, L.: Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. A review. Vet Med-UZPI (Czech Republic) 49, 389–399 (2004)CrossRef
16.
go back to reference Lau, K-T., Gu, C., Hui, D.: A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006) Lau, K-T., Gu, C., Hui, D.: A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006)
17.
go back to reference Li, G., Wang, L., Lichang, W., Ni, H., Pittman, C.: Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym. 11, 123–154 (2001) Li, G., Wang, L., Lichang, W., Ni, H., Pittman, C.: Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym. 11, 123–154 (2001)
18.
go back to reference K. Muralidharan, J.H. Simmons, P.A Deymier, Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J. Non-Crystalline Solids, 351, 1532–1542 (2005) K. Muralidharan, J.H. Simmons, P.A Deymier, Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J. Non-Crystalline Solids, 351, 1532–1542 (2005)
19.
go back to reference Bailey, E., Holloway, J.R.: Experimental determination of elastic properties of talc to 800 C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci. Lett. 183(3), 487–498 (2000) Bailey, E., Holloway, J.R.: Experimental determination of elastic properties of talc to 800 C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci. Lett. 183(3), 487–498 (2000)
20.
go back to reference Tomoko, K., Masayoshi, H., Akihiko, H., Toru, S., Koichi Niihara, N.: Langmuir 14(12), 3160–3163 (1998) Tomoko, K., Masayoshi, H., Akihiko, H., Toru, S., Koichi Niihara, N.: Langmuir 14(12), 3160–3163 (1998)
21.
go back to reference Bhattacharya, M., Maiti, M., Bhowmick, A.K.: Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chem. Technol. 81, 782–808 (2008)CrossRef Bhattacharya, M., Maiti, M., Bhowmick, A.K.: Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chem. Technol. 81, 782–808 (2008)CrossRef
22.
go back to reference Maiti, M., Bhattacharya, M. Bhowmick, A.K.: Elastomer nanocomposites. Rubber Chem. Technol. 81, 384–469 (2008) Maiti, M., Bhattacharya, M. Bhowmick, A.K.: Elastomer nanocomposites. Rubber Chem. Technol. 81, 384–469 (2008)
23.
go back to reference Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mat. Sci. Eng. R 53(3–4), 73–197 (2006)CrossRef Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mat. Sci. Eng. R 53(3–4), 73–197 (2006)CrossRef
24.
go back to reference Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J.: Current issues in research on structure/property relationships in polymer nanocomposites. Polymer 51(15), 3321–43 (2010) Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J.: Current issues in research on structure/property relationships in polymer nanocomposites. Polymer 51(15), 3321–43 (2010)
25.
go back to reference Montes, H., Chausseé, T., Papon, A., Lequeux, F., Guy, L.: Particles in model filled rubber: dispersion and mechanical properties. Eur. Phys. J. E. 31(3):263–268 (2010) Montes, H., Chausseé, T., Papon, A., Lequeux, F., Guy, L.: Particles in model filled rubber: dispersion and mechanical properties. Eur. Phys. J. E. 31(3):263–268 (2010)
26.
go back to reference Kroshefsky, R.D., Price, J.L., Mangaraj, D.: Role of compatibilization in polymer nanocomposites. Rubber Chem. Technol. 82, 340–368 (2009)CrossRef Kroshefsky, R.D., Price, J.L., Mangaraj, D.: Role of compatibilization in polymer nanocomposites. Rubber Chem. Technol. 82, 340–368 (2009)CrossRef
27.
go back to reference Chabert, E., Bornert, M., Bourgeat-Lami, E., Cavaille, J.Y., Dendievel, R., Gauthier, C.: Filler-filler interactions and viscoelastic behavior of polymer nanocomposites. Mat. Sci. Eng. A 381, 320–330 (2004)CrossRef Chabert, E., Bornert, M., Bourgeat-Lami, E., Cavaille, J.Y., Dendievel, R., Gauthier, C.: Filler-filler interactions and viscoelastic behavior of polymer nanocomposites. Mat. Sci. Eng. A 381, 320–330 (2004)CrossRef
28.
go back to reference Iwamoto, S., Kai, W., Isogai, A., Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9), 2571–2576 (2009)CrossRef Iwamoto, S., Kai, W., Isogai, A., Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9), 2571–2576 (2009)CrossRef
29.
go back to reference Miyake, H., Gotoh, Y., Ohkoshi, Y., Nagura, M.: Tensile properties of wet cellulose. Polym. J. 32, 29–32 (2000) Miyake, H., Gotoh, Y., Ohkoshi, Y., Nagura, M.: Tensile properties of wet cellulose. Polym. J. 32, 29–32 (2000)
30.
go back to reference Bongarde, U., Shinde, V.: Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 3(2), 431–436 (2014) Bongarde, U., Shinde, V.: Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 3(2), 431–436 (2014)
31.
go back to reference Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N.: Review processing, properties and applications of reactive silica from rice husk—an overview. J. Mater. Sci. 38, 3159–3168 (2003)CrossRef Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N.: Review processing, properties and applications of reactive silica from rice husk—an overview. J. Mater. Sci. 38, 3159–3168 (2003)CrossRef
32.
go back to reference Donnet, J.B., Voet, A.: Carbon Black: Physics, Chemistry, and Elastomer Reinforcement. M. Dekker, New York, NY (1976) Donnet, J.B., Voet, A.: Carbon Black: Physics, Chemistry, and Elastomer Reinforcement. M. Dekker, New York, NY (1976)
33.
go back to reference Studebaker, M.L.: The chemistry of carbon black and reinforcement. Rubber Chem. Technol. 30(5), 1400–1483 (1957)CrossRef Studebaker, M.L.: The chemistry of carbon black and reinforcement. Rubber Chem. Technol. 30(5), 1400–1483 (1957)CrossRef
34.
go back to reference Minus, M., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM 57(2), 52–58 (2005)CrossRef Minus, M., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM 57(2), 52–58 (2005)CrossRef
35.
go back to reference Zhang, Y., Tajaddod, N., Song, K., Minus, M.L.: Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91, 479–493 (2015)CrossRef Zhang, Y., Tajaddod, N., Song, K., Minus, M.L.: Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91, 479–493 (2015)CrossRef
36.
go back to reference Zhang, Y., Song, K., Meng, J., Minus, M.L.: Tailoring polyacrylonitrile interfacial morphological structure by crystallization in the presence of single-wall carbon nanotubes. ACS Appl. Mater. Interfaces 5(3), 807–814 (2013) Zhang, Y., Song, K., Meng, J., Minus, M.L.: Tailoring polyacrylonitrile interfacial morphological structure by crystallization in the presence of single-wall carbon nanotubes. ACS Appl. Mater. Interfaces 5(3), 807–814 (2013)
37.
go back to reference Tang, M., Xing, W., Wu, J., Huang, G., Xiang, K., Guo, L., Li, G.: J. Mater. Chem. 3(11), 5942–5948 (2015)CrossRef Tang, M., Xing, W., Wu, J., Huang, G., Xiang, K., Guo, L., Li, G.: J. Mater. Chem. 3(11), 5942–5948 (2015)CrossRef
38.
go back to reference Li, H., Wu, S., Wu, J., Huang, G.: Colloid Polym. Sci. 291(10), 2279–2287 (2013) Li, H., Wu, S., Wu, J., Huang, G.: Colloid Polym. Sci. 291(10), 2279–2287 (2013)
39.
go back to reference De Falco, A., Marzocca, A.J., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G.H., Goyanes, S.: J. Appl. Polym. Sci., 113(5), 2851–2857 (2009) De Falco, A., Marzocca, A.J., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G.H., Goyanes, S.: J. Appl. Polym. Sci., 113(5), 2851–2857 (2009)
40.
go back to reference Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Compos. Sci. Technol. 67(9), 1813–1822 (2007)CrossRef Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Compos. Sci. Technol. 67(9), 1813–1822 (2007)CrossRef
41.
go back to reference Xing, W., Tang, M., Wu, J., Huang, G., Li, H., Lei, Z., Fu, X., Li, H.: Compos. Sci. Technol. 99, 67–74 (2014)CrossRef Xing, W., Tang, M., Wu, J., Huang, G., Li, H., Lei, Z., Fu, X., Li, H.: Compos. Sci. Technol. 99, 67–74 (2014)CrossRef
42.
go back to reference Xing, W., Wu, J., Huang, G., Li, H., Tang, M., Fu, X.: Polym. Int. 63(9), 1674–1681 (2014)CrossRef Xing, W., Wu, J., Huang, G., Li, H., Tang, M., Fu, X.: Polym. Int. 63(9), 1674–1681 (2014)CrossRef
43.
go back to reference Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: J. Mater. Chem. 5(29), 15048–15055 (2017)CrossRef Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: J. Mater. Chem. 5(29), 15048–15055 (2017)CrossRef
44.
go back to reference Ay, A.N., Zumreoglu-Karan, B., Temel, A., Rives, V.: Bioinorganic magnetic coreshell-nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorg. Chem. 48, 8871–8877 (2009) Ay, A.N., Zumreoglu-Karan, B., Temel, A., Rives, V.: Bioinorganic magnetic coreshell-nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorg. Chem. 48, 8871–8877 (2009)
45.
go back to reference Bagherifam, S., Komarneni, A., Lakzian, A., Fotovat, R., Khorasani, R., Huang, W., Ma, J., Wang, Y.: Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl. Clay Sci. 95, 119–125 (2014) Bagherifam, S., Komarneni, A., Lakzian, A., Fotovat, R., Khorasani, R., Huang, W., Ma, J., Wang, Y.: Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl. Clay Sci. 95, 119–125 (2014)
46.
go back to reference Barahuie, F., Hussein, M.Z., Gani, S.A., Fakurazi, S., Zainal, Z.: Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as ananticancernanodelivery system. J. Solid State Chem. 221, 21–31 (2015)CrossRef Barahuie, F., Hussein, M.Z., Gani, S.A., Fakurazi, S., Zainal, Z.: Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as ananticancernanodelivery system. J. Solid State Chem. 221, 21–31 (2015)CrossRef
47.
go back to reference Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C.: Urea biosensor based on Zn3Al-urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater. Sci. Eng., C 26, 328–333 (2006)CrossRef Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C.: Urea biosensor based on Zn3Al-urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater. Sci. Eng., C 26, 328–333 (2006)CrossRef
48.
go back to reference Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., Rosenzweig, A.: Dana’s New Mineralogy, 8th edn. Wiley, New York (1997) Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., Rosenzweig, A.: Dana’s New Mineralogy, 8th edn. Wiley, New York (1997)
49.
go back to reference Birgul, Z.K., Ahmet, A.: Layered double hydroxides – multifunctional nanomaterials. Chem. Pap. 66, 1–10 (2012). Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., Vittoria, V.: Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Appl. Clay Sci. 52, 34–40 (2011) Birgul, Z.K., Ahmet, A.: Layered double hydroxides – multifunctional nanomaterials. Chem. Pap. 66, 1–10 (2012). Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., Vittoria, V.: Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Appl. Clay Sci. 52, 34–40 (2011)
50.
go back to reference Shi, H.M., He, J.: Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. J. Catal. 279, 155–162 (2011)CrossRef Shi, H.M., He, J.: Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. J. Catal. 279, 155–162 (2011)CrossRef
51.
52.
go back to reference Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Eur. Polym. J42, 2140 (2006)CrossRef Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Eur. Polym. J42, 2140 (2006)CrossRef
53.
go back to reference Pradhan, S., Costa, F.R., Wagenknecht, U., Jehinichen, D., Bhowmick, A.K., Heinrich, G.: Eur. Polym. J. 44, 3122 (2008) Pradhan, S., Costa, F.R., Wagenknecht, U., Jehinichen, D., Bhowmick, A.K., Heinrich, G.: Eur. Polym. J. 44, 3122 (2008)
54.
go back to reference Lee, W.D., Im, S.S.: J. Polym. Sci. B: Polym. Phys. 45, 28 (2007) Lee, W.D., Im, S.S.: J. Polym. Sci. B: Polym. Phys. 45, 28 (2007)
55.
go back to reference Wu, G., Wang, L., Evans, D.G., Duan, X.: Eur. J. Inorg. Chem. 2006, 3185 (2006)CrossRef Wu, G., Wang, L., Evans, D.G., Duan, X.: Eur. J. Inorg. Chem. 2006, 3185 (2006)CrossRef
56.
go back to reference Acharya, H., Srivastava, S.K., Bhowmick, A.K.: Compos. Sci. Technol. 67, 2807 (2007)CrossRef Acharya, H., Srivastava, S.K., Bhowmick, A.K.: Compos. Sci. Technol. 67, 2807 (2007)CrossRef
57.
go back to reference Oertel, G. (ed.): Polyurethane Handbook. Hanser Publishers, Munich (1989) Oertel, G. (ed.): Polyurethane Handbook. Hanser Publishers, Munich (1989)
58.
go back to reference Tseng, W.Y., Lin, J.T., Mou, C.Y., Cheng, S., Liu, S.B., Chu, P.P., et al.: J. Am. Chem. Soc. 118, 4411 (1996) Tseng, W.Y., Lin, J.T., Mou, C.Y., Cheng, S., Liu, S.B., Chu, P.P., et al.: J. Am. Chem. Soc. 118, 4411 (1996)
59.
go back to reference Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)CrossRef Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)CrossRef
60.
go back to reference Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W., Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W.: Inorganic-bio-molecular hybrid nanomaterials as a genetic molecular code system. Adv. Mater. 16, 1181–1184 (2004)CrossRef Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W., Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W.: Inorganic-bio-molecular hybrid nanomaterials as a genetic molecular code system. Adv. Mater. 16, 1181–1184 (2004)CrossRef
61.
go back to reference Evans, D.G., Slade, R.C.T.: Layered double hydroxides. Structure and Bonding, vol. 119, pp. 1–87. Springer, Berlin, Germany (2006) Evans, D.G., Slade, R.C.T.: Layered double hydroxides. Structure and Bonding, vol. 119, pp. 1–87. Springer, Berlin, Germany (2006)
62.
go back to reference Mishra, G., Dash, B., Pandey, S., Sethi, D., Kumar, C.G.: Comparative evaluation of synthetic routes and antibacterial/antifungal activities of Zn-Al layered double hydroxides containing benzoate anion, 35(3), 247–260 (2017b) Mishra, G., Dash, B., Pandey, S., Sethi, D., Kumar, C.G.: Comparative evaluation of synthetic routes and antibacterial/antifungal activities of Zn-Al layered double hydroxides containing benzoate anion, 35(3), 247–260 (2017b)
63.
go back to reference Moaty, S.A.A., Farghali, A.A., Khaled, R.: Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA. Mater. Sci. Eng., C 68, 184–193 (2016)CrossRef Moaty, S.A.A., Farghali, A.A., Khaled, R.: Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA. Mater. Sci. Eng., C 68, 184–193 (2016)CrossRef
64.
go back to reference Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.P., Morel, J.P.: Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 13, 2582–2585 (2003)CrossRef Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.P., Morel, J.P.: Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 13, 2582–2585 (2003)CrossRef
65.
go back to reference Moujahid, E.M., Inacio, J., Besse, J.P., Leroux, F.: Adsorption of styrene sulfonate versus polystyrene sulfonate on layered double hydroxides. Microporous Mesoporous Mater. 57, 37–46 (2003)CrossRef Moujahid, E.M., Inacio, J., Besse, J.P., Leroux, F.: Adsorption of styrene sulfonate versus polystyrene sulfonate on layered double hydroxides. Microporous Mesoporous Mater. 57, 37–46 (2003)CrossRef
66.
go back to reference Zong, X., Wang, L.: Ion-exchangeable semiconductor materials for visible lightinduced photocatalysis. J Photochem. Photobiol. C: Photochem. Rev. 18, 32–49 (2014)CrossRef Zong, X., Wang, L.: Ion-exchangeable semiconductor materials for visible lightinduced photocatalysis. J Photochem. Photobiol. C: Photochem. Rev. 18, 32–49 (2014)CrossRef
67.
go back to reference Kuila, T., Srivastava, S.K., Bhowmick, A.K., Saxena, A.K.: Thermoplastic polyolefin based polymer—blend-layered double hydroxide Nanocomposites. Compos. Sci. Technol. 68, 3234–3239 (2008) Kuila, T., Srivastava, S.K., Bhowmick, A.K., Saxena, A.K.: Thermoplastic polyolefin based polymer—blend-layered double hydroxide Nanocomposites. Compos. Sci. Technol. 68, 3234–3239 (2008)
69.
go back to reference Dekany, I., Berger, F., Imrik, K., Lagaly, G.: Colloid Polym. Sci. 275, 681 (1997) Dekany, I., Berger, F., Imrik, K., Lagaly, G.: Colloid Polym. Sci. 275, 681 (1997)
70.
go back to reference Pavan, P.C., Crepaldi, E.L., Gomez, G., Valim, J.: Colloids Surf. A 154, 399 (1999) Pavan, P.C., Crepaldi, E.L., Gomez, G., Valim, J.: Colloids Surf. A 154, 399 (1999)
72.
73.
74.
go back to reference Celis, R., Koskinen, W.C., Cecchi, A.M., Bresnahan, G.A., Carrisoza, M.J., Ulibarri, M.A., Pavlovic, I., Hermosin, M.C.: J. Environ. Sci. Health B 34, 929 (1999)CrossRef Celis, R., Koskinen, W.C., Cecchi, A.M., Bresnahan, G.A., Carrisoza, M.J., Ulibarri, M.A., Pavlovic, I., Hermosin, M.C.: J. Environ. Sci. Health B 34, 929 (1999)CrossRef
75.
go back to reference Celis, R., Koskinen, W.C., Hermosin, M.C., Ulibarri, M.A., Cornejo, J.: Soil Sci. Soc. Am. J. 64, 36 (2000)CrossRef Celis, R., Koskinen, W.C., Hermosin, M.C., Ulibarri, M.A., Cornejo, J.: Soil Sci. Soc. Am. J. 64, 36 (2000)CrossRef
76.
go back to reference Villa, M.V., Sanchez-Martin, M.J., Sanchez-Camazano, M.: J. Environ. Sci. Health B 34, 509 (1999)CrossRef Villa, M.V., Sanchez-Martin, M.J., Sanchez-Camazano, M.: J. Environ. Sci. Health B 34, 509 (1999)CrossRef
77.
go back to reference Klumpp, E., Contreras-Ortega, C., Klahre, P., Tino, F.J., Yapar, S., Portillo, C., Stegen, S., Queirolo, F., Schwuger, M.J.: Colloids Surf. A230, 111 (2004) Klumpp, E., Contreras-Ortega, C., Klahre, P., Tino, F.J., Yapar, S., Portillo, C., Stegen, S., Queirolo, F., Schwuger, M.J.: Colloids Surf. A230, 111 (2004)
78.
go back to reference Kovanda, F., Jindová, E., Lang, K., Kubát, P., Sedláková, Z.: Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites. Appl. Clay Sci. 48, 260–270 (2010) Kovanda, F., Jindová, E., Lang, K., Kubát, P., Sedláková, Z.: Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites. Appl. Clay Sci. 48, 260–270 (2010)
79.
80.
go back to reference Nyambo, C., Wang, D., Wilkie, C.A.: Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 20, 332–340 (2009)CrossRef Nyambo, C., Wang, D., Wilkie, C.A.: Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 20, 332–340 (2009)CrossRef
81.
go back to reference Leroux, F., Besse, J.-P.: Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515 (2001)CrossRef Leroux, F., Besse, J.-P.: Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515 (2001)CrossRef
82.
go back to reference Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M., Wilkie, C.A.: Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano) composites of poly(methyl methacrylate). J. Mater. Chem. 18, 3091–3102 (2008)CrossRef Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M., Wilkie, C.A.: Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano) composites of poly(methyl methacrylate). J. Mater. Chem. 18, 3091–3102 (2008)CrossRef
83.
go back to reference Fernon, V., Vichot, A., Colombet, P., Damme, H., Bégin, F.: Mater. Sci. Forums 152–153, 335–338 (1994)CrossRef Fernon, V., Vichot, A., Colombet, P., Damme, H., Bégin, F.: Mater. Sci. Forums 152–153, 335–338 (1994)CrossRef
84.
go back to reference Forano, C., Costantino, U., Prévot, V., TaviotGueho, C., 2013. Layered double hydroxides (LDH), in: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, 2nd edn. Part A: Fundamentals, Developments in Clay Science, vol. 5, pp. 745–782. Elsevier, Amsterdam Forano, C., Costantino, U., Prévot, V., TaviotGueho, C., 2013. Layered double hydroxides (LDH), in: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, 2nd edn. Part A: Fundamentals, Developments in Clay Science, vol. 5, pp. 745–782. Elsevier, Amsterdam
85.
go back to reference Zubair, Mukarram, Daud, Muhammad, Mckay, Gordon, Shehzad, Farrukh, Al-Harthi, Mamdouh: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 272–292 (2017)CrossRef Zubair, Mukarram, Daud, Muhammad, Mckay, Gordon, Shehzad, Farrukh, Al-Harthi, Mamdouh: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 272–292 (2017)CrossRef
86.
go back to reference Wang, Qiang, O’Hare, Dermot: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)CrossRef Wang, Qiang, O’Hare, Dermot: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)CrossRef
87.
go back to reference Adachi-Pagano, M., Forano, C., Besse, J.P.: Chem. Commun. 91 (2000) Adachi-Pagano, M., Forano, C., Besse, J.P.: Chem. Commun. 91 (2000)
88.
go back to reference O’Leary, S., O’Hare, D., Seeley, G.: Chem. Commun. 1506 (2002) O’Leary, S., O’Hare, D., Seeley, G.: Chem. Commun. 1506 (2002)
89.
90.
go back to reference Naik, V.V., Ramesh, T.N., Vasudevan, S.: J. Phys. Chem. Lett. 2, 1193 (2011)CrossRef Naik, V.V., Ramesh, T.N., Vasudevan, S.: J. Phys. Chem. Lett. 2, 1193 (2011)CrossRef
93.
go back to reference Wypych, F., Bubniak, G.A., Halma, M., Nakagaki, S.: J. Colloid Interface Sci. 264, 203 (2003)CrossRef Wypych, F., Bubniak, G.A., Halma, M., Nakagaki, S.: J. Colloid Interface Sci. 264, 203 (2003)CrossRef
94.
go back to reference Li, L., Ma, R., Ebina, Y., Iyi, N., Sasaki, T.: Chem. Mater. 17, 4386 (2005)CrossRef Li, L., Ma, R., Ebina, Y., Iyi, N., Sasaki, T.: Chem. Mater. 17, 4386 (2005)CrossRef
95.
go back to reference Wu, Q., Olafsen, A., Vistad, Ø.B., Roots, J., Norby, P.: J. Mater. Chem. 15, 4695 (2005)CrossRef Wu, Q., Olafsen, A., Vistad, Ø.B., Roots, J., Norby, P.: J. Mater. Chem. 15, 4695 (2005)CrossRef
96.
go back to reference Gordijo, C.R., Leopoldo Constantino, V.R., Silva, D.: o. J. Solid State Chem. 2007, 180 (1967) Gordijo, C.R., Leopoldo Constantino, V.R., Silva, D.: o. J. Solid State Chem. 2007, 180 (1967)
97.
go back to reference Hu, G., Wang, N., O’Hare, D., Davis, J.: Chem. Commun. 287 (2006) Hu, G., Wang, N., O’Hare, D., Davis, J.: Chem. Commun. 287 (2006)
99.
go back to reference Ulibarri, M.A., Fernandez, J.M., Labajos, F.M., Rives, V.: Anionic clays with variable valence cations: synthesis and characterization of cobalt aluminum hydroxide carbonate hydrate [Co1-xAlx(OH)2](CO3)x/2..nH2O. Chem. Mat. 3, 626e30 (1991) Ulibarri, M.A., Fernandez, J.M., Labajos, F.M., Rives, V.: Anionic clays with variable valence cations: synthesis and characterization of cobalt aluminum hydroxide carbonate hydrate [Co1-xAlx(OH)2](CO3)x/2..nH2O. Chem. Mat. 3, 626e30 (1991)
100.
go back to reference Ribet, S., Tichit, D., Coq, B., Ducourant B., Morato F.: Synthesis and activation of CoeMgeAl layered double hydroxides. J. Solid State Chem. 142, 382e92 (1999) Ribet, S., Tichit, D., Coq, B., Ducourant B., Morato F.: Synthesis and activation of CoeMgeAl layered double hydroxides. J. Solid State Chem. 142, 382e92 (1999)
101.
go back to reference Zhang, Z., Hua, Z., Lang, J., Song, Y., Zhang, Q., Han, Q., Fan, H., Gao, M., Li, X., Yang, J.: Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity. CrystEngComm 21, 4607–4619 (2019)CrossRef Zhang, Z., Hua, Z., Lang, J., Song, Y., Zhang, Q., Han, Q., Fan, H., Gao, M., Li, X., Yang, J.: Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity. CrystEngComm 21, 4607–4619 (2019)CrossRef
102.
go back to reference Perez-Bernal, M.E., Ruano-Casero, R.J., Benito, F., Rives, V.: J. Solid State Chem. 182, 1593 (2009)CrossRef Perez-Bernal, M.E., Ruano-Casero, R.J., Benito, F., Rives, V.: J. Solid State Chem. 182, 1593 (2009)CrossRef
103.
go back to reference Wang, C.J., Wu, Y.A., Jacobs, R.M.J., Warner, J.H., Williams, G.R., O’Hare, D.: Chem. Mater. 23, 171 (2011)CrossRef Wang, C.J., Wu, Y.A., Jacobs, R.M.J., Warner, J.H., Williams, G.R., O’Hare, D.: Chem. Mater. 23, 171 (2011)CrossRef
104.
go back to reference Bellezza, F., Cipiciani, A., Costantino, U., Nocchetti, M., Posati, T.: Eur. J. Inorg. Chem. 2603 (2009) Bellezza, F., Cipiciani, A., Costantino, U., Nocchetti, M., Posati, T.: Eur. J. Inorg. Chem. 2603 (2009)
105.
go back to reference Crepaldi, E.L., Pavan, P.C., Valim, J.B.: Anion exchange in layered double hydroxides by surfactant salt formation. J. Mater. Chem. 10, 1337e43 (2000) Crepaldi, E.L., Pavan, P.C., Valim, J.B.: Anion exchange in layered double hydroxides by surfactant salt formation. J. Mater. Chem. 10, 1337e43 (2000)
106.
go back to reference Oh, J.M., Hwang, S.H., Choy, J.H.: The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151, 285e91 (2002) Oh, J.M., Hwang, S.H., Choy, J.H.: The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151, 285e91 (2002)
107.
go back to reference Ogawa, M., Kaiho, H.: Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 18, 4240e2 (2002) Ogawa, M., Kaiho, H.: Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 18, 4240e2 (2002)
108.
go back to reference Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R.: New synthetic routes to hydrotalcite-like compoundsdcharacterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 1998, 1439e46 (1998) Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R.: New synthetic routes to hydrotalcite-like compoundsdcharacterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 1998, 1439e46 (1998)
109.
go back to reference Adachi-Pagano, M., Forano, C., Besse, J.P.: Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology. J. Mater. Chem. 13, 1988e93 (2003) Adachi-Pagano, M., Forano, C., Besse, J.P.: Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology. J. Mater. Chem. 13, 1988e93 (2003)
110.
go back to reference Rives, V., del Arco, M., Martín, C.: Intercalation of drugs in layered double hydroxides and theircontrolled release: a review. Appl. Clay Sci. 88–89, 239–269 (2014)CrossRef Rives, V., del Arco, M., Martín, C.: Intercalation of drugs in layered double hydroxides and theircontrolled release: a review. Appl. Clay Sci. 88–89, 239–269 (2014)CrossRef
111.
go back to reference Leroux, F., Adachi-Pagano, M.A., Intissar, M., Chauviere, S., Forano, C., Besse, J.P.: Delamination and re-stacking of layered double hydroxides. J. Mater. Chem. 11, 105–112 (2001)CrossRef Leroux, F., Adachi-Pagano, M.A., Intissar, M., Chauviere, S., Forano, C., Besse, J.P.: Delamination and re-stacking of layered double hydroxides. J. Mater. Chem. 11, 105–112 (2001)CrossRef
112.
go back to reference Li, F., Duan, X.: Applications of layered double hydroxides. In: Duan, X., Evans, D.G. (eds.) Structure and Bonding. Springer, vol. 119, pp. 193–223. New York, NY, USA (2006) Li, F., Duan, X.: Applications of layered double hydroxides. In: Duan, X., Evans, D.G. (eds.) Structure and Bonding. Springer, vol. 119, pp. 193–223. New York, NY, USA (2006)
113.
go back to reference Haraketi, M., Hosni, K., Srasra, E.: Intercalation of salicylic acid into Zn-Al and Mg- Al layered doublehydroxides for a controlled release formulation. Colloid J. 78(4), 533–541 (2016)CrossRef Haraketi, M., Hosni, K., Srasra, E.: Intercalation of salicylic acid into Zn-Al and Mg- Al layered doublehydroxides for a controlled release formulation. Colloid J. 78(4), 533–541 (2016)CrossRef
114.
go back to reference Yun, S.K., Pinnavaia, T.J.: Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem. Mat. 7, 348e54 (1995) Yun, S.K., Pinnavaia, T.J.: Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem. Mat. 7, 348e54 (1995)
116.
go back to reference Lee, W.D., Im, S.S.: Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J. Polym. Sci., Part B: Polym. Phys. 45(1), 28–40 (2007)CrossRef Lee, W.D., Im, S.S.: Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J. Polym. Sci., Part B: Polym. Phys. 45(1), 28–40 (2007)CrossRef
117.
go back to reference Chen, W., Feng, L., Qu, B.: Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 66, 913–918 (2006) Chen, W., Feng, L., Qu, B.: Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 66, 913–918 (2006)
118.
go back to reference Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocomposites. Eur. Polym. J. 42(9), 2140–2152 (2006) Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocomposites. Eur. Polym. J. 42(9), 2140–2152 (2006)
119.
go back to reference Wu, G., Wang, L., Evans, D.G., Duan, X.: Layered double hydroxides containing intercalated zinc sulfide nanoparticles: synthesis and characterization. Eur. J. Inorg. Chem. 2006(16), n3185–n3196 (2006)CrossRef Wu, G., Wang, L., Evans, D.G., Duan, X.: Layered double hydroxides containing intercalated zinc sulfide nanoparticles: synthesis and characterization. Eur. J. Inorg. Chem. 2006(16), n3185–n3196 (2006)CrossRef
120.
122.
123.
125.
126.
127.
128.
go back to reference Kuila, T., Acharya, H., Srivastava, S.K., Bholomica, A.K.: J. Appl. Polym. Sci. 108, 1329 (2008)CrossRef Kuila, T., Acharya, H., Srivastava, S.K., Bholomica, A.K.: J. Appl. Polym. Sci. 108, 1329 (2008)CrossRef
130.
go back to reference Tanaka, M., Park, I.Y., Kuroda, K., Kato, C.: Bull. Chem. Soc. Jpn 62, 3442 (1989)CrossRef Tanaka, M., Park, I.Y., Kuroda, K., Kato, C.: Bull. Chem. Soc. Jpn 62, 3442 (1989)CrossRef
132.
138.
139.
go back to reference Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Thermochim. Acta 502, 1 (2010)CrossRef Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Thermochim. Acta 502, 1 (2010)CrossRef
140.
go back to reference Zammarano, M., Bellayer, S., Gilman, J.W., Franceschi, M., Beyer, F.L., Harris, R.H., Meriani, S.: Polymer 47, 652 (2006)CrossRef Zammarano, M., Bellayer, S., Gilman, J.W., Franceschi, M., Beyer, F.L., Harris, R.H., Meriani, S.: Polymer 47, 652 (2006)CrossRef
142.
go back to reference Li, B., Hu, Y., Liu, J., Chen, Z., Fan, W.: Colloid Polym. Sci. 281, 998 (2003)CrossRef Li, B., Hu, Y., Liu, J., Chen, Z., Fan, W.: Colloid Polym. Sci. 281, 998 (2003)CrossRef
143.
go back to reference Huang, S., Peng, H., Tjiu, W.W., Yang, Z., Zhu, H., Tang, T., Liu, T.: J. Phys. Chem. B 114, 16766 (2010)CrossRef Huang, S., Peng, H., Tjiu, W.W., Yang, Z., Zhu, H., Tang, T., Liu, T.: J. Phys. Chem. B 114, 16766 (2010)CrossRef
144.
go back to reference Zhao, Y., Yang, W., Xue, Y., Wang, X., Lin, T.: J. Mater. Chem. 21, 4869 (2011)CrossRef Zhao, Y., Yang, W., Xue, Y., Wang, X., Lin, T.: J. Mater. Chem. 21, 4869 (2011)CrossRef
145.
146.
go back to reference Xu, Z.P., Stevenson, G.S., Lu, C.Q., Lu, G.Q., Bartlett, P.F., Gray, P.P.: Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128, 3, 6–7 (2005) Xu, Z.P., Stevenson, G.S., Lu, C.Q., Lu, G.Q., Bartlett, P.F., Gray, P.P.: Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128, 3, 6–7 (2005)
147.
go back to reference Liu, Z., Ma, R., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23(86), 1–7 (2006) Liu, Z., Ma, R., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23(86), 1–7 (2006)
148.
go back to reference Marcelin, G., Stockhausen, N.J., Post, J.F.M., Schutz, A.: Dynamics and ordering of intercalated water in layered metal-hydroxides. J. Phys. Chem. 93(46), 46–50 (1989) Marcelin, G., Stockhausen, N.J., Post, J.F.M., Schutz, A.: Dynamics and ordering of intercalated water in layered metal-hydroxides. J. Phys. Chem. 93(46), 46–50 (1989)
149.
go back to reference Pesic, L., Salipurovic, S., Markovic, V., Vucelic, D., Kagunya, W., Jones, W.: Thermalcharacteristics of a synthetic hydrotalcite-like material. J. Mater. Chem. 2(10), 69–73 (1992)CrossRef Pesic, L., Salipurovic, S., Markovic, V., Vucelic, D., Kagunya, W., Jones, W.: Thermalcharacteristics of a synthetic hydrotalcite-like material. J. Mater. Chem. 2(10), 69–73 (1992)CrossRef
150.
go back to reference Parker, L.M., Milestone, N.B., Newman, R.H.: The use of hydrotalcite as an anion absorbent. Ind. Eng. Chem. Res. 34, 1196e202 (1995). [29] Inacio, J., Taviot-Gueho, C., Forano, C., Besse, J.P.: Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18(2), 55–64 (2001) Parker, L.M., Milestone, N.B., Newman, R.H.: The use of hydrotalcite as an anion absorbent. Ind. Eng. Chem. Res. 34, 1196e202 (1995). [29] Inacio, J., Taviot-Gueho, C., Forano, C., Besse, J.P.: Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18(2), 55–64 (2001)
151.
go back to reference Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosıń, M.C., Cornejo, J.: Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl. Clay Sci. 18, 17–27 (2001) Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosıń, M.C., Cornejo, J.: Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl. Clay Sci. 18, 17–27 (2001)
152.
go back to reference Kotal, M., Srivastava, S.K., Bhowmick, A.K.: Thermoplastic polyurethane and nitrile butadiene rubber blends with layered double hydroxide nanocomposites by solution blending. Polym. Int. 59(1), 2–10 (2010)CrossRef Kotal, M., Srivastava, S.K., Bhowmick, A.K.: Thermoplastic polyurethane and nitrile butadiene rubber blends with layered double hydroxide nanocomposites by solution blending. Polym. Int. 59(1), 2–10 (2010)CrossRef
153.
go back to reference Kotal, M., Kuila, T., Srivastava, S.K., Bhowmick, A.K.: Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 114(5), 2691–2699 (2009)CrossRef Kotal, M., Kuila, T., Srivastava, S.K., Bhowmick, A.K.: Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 114(5), 2691–2699 (2009)CrossRef
154.
go back to reference Yang, W., Ma, L., Song, L., Hu, Y.: Fabrication of thermoplastic polyester elastomer/layered zinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical and combustion properties. Mater. Chem. Phys. 141(1), 582–588 (2013)CrossRef Yang, W., Ma, L., Song, L., Hu, Y.: Fabrication of thermoplastic polyester elastomer/layered zinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical and combustion properties. Mater. Chem. Phys. 141(1), 582–588 (2013)CrossRef
155.
go back to reference Kotal, M., Srivastava, S.K., Bhowmick, A.K., Chakraborty, S.K.: Morphology and properties of stearate-intercalated layered double hydroxide nanoplatelet-reinforced thermoplastic polyurethane. Polym. Int. 60(5), 772–780 (2011)CrossRef Kotal, M., Srivastava, S.K., Bhowmick, A.K., Chakraborty, S.K.: Morphology and properties of stearate-intercalated layered double hydroxide nanoplatelet-reinforced thermoplastic polyurethane. Polym. Int. 60(5), 772–780 (2011)CrossRef
156.
go back to reference Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng.: R: Rep. 28(1), 1–63 (2000) Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng.: R: Rep. 28(1), 1–63 (2000)
157.
go back to reference Balasubramanian, M., Jawahar, P.: Nanocomposites based on inorganic nanoparticles. Polym. Nanocompos. Based Inorg. Org. Nanomater. 257–346 (2015) Balasubramanian, M., Jawahar, P.: Nanocomposites based on inorganic nanoparticles. Polym. Nanocompos. Based Inorg. Org. Nanomater. 257–346 (2015)
158.
go back to reference Clocker, E.T., Paterek, W., Farel, N.D., Selsley, M.J.: Conversion of clay to its colloidal form by hydrodynamic attrition. Google Patents (1976) Clocker, E.T., Paterek, W., Farel, N.D., Selsley, M.J.: Conversion of clay to its colloidal form by hydrodynamic attrition. Google Patents (1976)
159.
go back to reference DeKimpe, C., Gastuche, M., Brindley, G.W.: Ionic coordination in alumino-silicic gels in relation to clay mineral formation. Am. Mineral. 46(11–2), 1370–1381 (1961) DeKimpe, C., Gastuche, M., Brindley, G.W.: Ionic coordination in alumino-silicic gels in relation to clay mineral formation. Am. Mineral. 46(11–2), 1370–1381 (1961)
160.
go back to reference Eckel, D.F., Balogh, M.P., Fasulo, P.D., Rodgers, W.R.: Assessing organo-clay dispersion in polymer nanocomposites. J. Appl. Polym. Sci. 93(3), 1110–1117 (2004)CrossRef Eckel, D.F., Balogh, M.P., Fasulo, P.D., Rodgers, W.R.: Assessing organo-clay dispersion in polymer nanocomposites. J. Appl. Polym. Sci. 93(3), 1110–1117 (2004)CrossRef
161.
go back to reference Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: J Polym. Sci., Part A: Polym. Chem. 31, 1755 (1993) Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: J Polym. Sci., Part A: Polym. Chem. 31, 1755 (1993)
162.
go back to reference Kubies, D., Pantoustier, N., Dubois, P., Rulmont, A., Jerome, R.: Controlled ring-opening polymerization of ε-caprolactone in the presence of layered silicates and formation of nanocomposites. Macromolecules 35, 3318 (2002)CrossRef Kubies, D., Pantoustier, N., Dubois, P., Rulmont, A., Jerome, R.: Controlled ring-opening polymerization of ε-caprolactone in the presence of layered silicates and formation of nanocomposites. Macromolecules 35, 3318 (2002)CrossRef
163.
go back to reference Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Kubies, D., Calberg, C., Jerome, R., Dubois, P.: Poly(ε-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 3, 8385 (2002)CrossRef Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Kubies, D., Calberg, C., Jerome, R., Dubois, P.: Poly(ε-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 3, 8385 (2002)CrossRef
164.
go back to reference Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes, vol. 4. Elsevier (2012) Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes, vol. 4. Elsevier (2012)
165.
go back to reference Grim, R.: Clay Mineralogy. McGraw-Hill, New York (1968) Grim, R.: Clay Mineralogy. McGraw-Hill, New York (1968)
169.
go back to reference Roy, R.: The preparation and properties of synthetic clay minerals. Genese et Synthese des Argiles, Colloques Intern Centre Nat Recherche Sci (1962) Roy, R.: The preparation and properties of synthetic clay minerals. Genese et Synthese des Argiles, Colloques Intern Centre Nat Recherche Sci (1962)
170.
go back to reference Sadhu, S., Bhowmick, A.: Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy. J. Mater. Sci. 40(7), 1633–1642 (2005)CrossRef Sadhu, S., Bhowmick, A.: Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy. J. Mater. Sci. 40(7), 1633–1642 (2005)CrossRef
171.
go back to reference Guo, F., Aryana, S., Han, Y., Jiao, Y.: A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 8, 1696 (2018)CrossRef Guo, F., Aryana, S., Han, Y., Jiao, Y.: A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 8, 1696 (2018)CrossRef
172.
go back to reference Jlassi, K., Krupa, I., Chehimi, M.M.: Overview: clay preparation, properties, modification. In: Jlassi, K., Chehimi, M.M., Thomas, S. (eds.) Clay-Polymer Nanocomposites, pp. 1–28. Elsevier, Amsterdam, The Netherlands (2017) Jlassi, K., Krupa, I., Chehimi, M.M.: Overview: clay preparation, properties, modification. In: Jlassi, K., Chehimi, M.M., Thomas, S. (eds.) Clay-Polymer Nanocomposites, pp. 1–28. Elsevier, Amsterdam, The Netherlands (2017)
173.
go back to reference Jordan, J.W.: Organophilic bentonites: i swelling in organic liquids. J. Phys. Chem. 53(2), 294–306 (1949) Jordan, J.W.: Organophilic bentonites: i swelling in organic liquids. J. Phys. Chem. 53(2), 294–306 (1949)
174.
go back to reference Van Olphen, H.: An Introduction to Clay Colloidal Chemistry, pp. 66–67. Wiley, New York (1977) Van Olphen, H.: An Introduction to Clay Colloidal Chemistry, pp. 66–67. Wiley, New York (1977)
175.
go back to reference Giannelis, E.P.: Polymer layered silicate nanocompo-sites. Adv. Mater. 8(1), 29–35 (1996)CrossRef Giannelis, E.P.: Polymer layered silicate nanocompo-sites. Adv. Mater. 8(1), 29–35 (1996)CrossRef
176.
go back to reference Maiti, P., Yamada, K., Okamoto, M., Ueda K., Oka-moto, K.: New polylactide/layered silicate nanocomposites: role of organoclays. Chem. Mater. 14(11), 4654–4661 (2002) Maiti, P., Yamada, K., Okamoto, M., Ueda K., Oka-moto, K.: New polylactide/layered silicate nanocomposites: role of organoclays. Chem. Mater. 14(11), 4654–4661 (2002)
177.
go back to reference Vaia, R.A., Teukolsky, R.K., Giannelis, E.P.: Inter-layer structure and molecular environment of alkylam-monium layered silicates. Chem. Mater. 6(7), 1017–1022 (1994)CrossRef Vaia, R.A., Teukolsky, R.K., Giannelis, E.P.: Inter-layer structure and molecular environment of alkylam-monium layered silicates. Chem. Mater. 6(7), 1017–1022 (1994)CrossRef
178.
go back to reference Xie, W., Gao, Z., Pan, W., Hunter, D., Singh, A., Vaia, R.: Thermal Degradation chemistry of alkyl quaternary ammonium MMT. Chem. Mater. 13(9), 2979–2990 (2001)CrossRef Xie, W., Gao, Z., Pan, W., Hunter, D., Singh, A., Vaia, R.: Thermal Degradation chemistry of alkyl quaternary ammonium MMT. Chem. Mater. 13(9), 2979–2990 (2001)CrossRef
179.
go back to reference Li, Y., Ishida, H.: A study of morphology and inter-calation kinetics of polystyrene-organoclay nanocom-posites. Macromolecules 38(15), 6513–6519 (2005)CrossRef Li, Y., Ishida, H.: A study of morphology and inter-calation kinetics of polystyrene-organoclay nanocom-posites. Macromolecules 38(15), 6513–6519 (2005)CrossRef
180.
go back to reference Zhu, J., Morgan, A., Lamelas, F., Wilkie, C.: Fire properties of polystyrene-clay nanocomposites. Chem. Mater. 13(10), 3774–3780 (2001)CrossRef Zhu, J., Morgan, A., Lamelas, F., Wilkie, C.: Fire properties of polystyrene-clay nanocomposites. Chem. Mater. 13(10), 3774–3780 (2001)CrossRef
181.
go back to reference Hartwig, A., Putz, D., Schartel M., Wendschuh-Josties, M.: Combustion behaviour of epoxide based nano-composites with ammonium and phosphonium bento-nites. Macromol. Chem. Phys. 204(18), 2247–2257 (2003) Hartwig, A., Putz, D., Schartel M., Wendschuh-Josties, M.: Combustion behaviour of epoxide based nano-composites with ammonium and phosphonium bento-nites. Macromol. Chem. Phys. 204(18), 2247–2257 (2003)
182.
go back to reference Hrobarikova, J., Robert, J.L., Calberg, C., Jerome R., Grandjean, J.: Solid-state NMR study of intercalated spe-cies in poly(ε-caprolactone)/clay nanocomposites. Langmuir, 20(22), 9828–9833 (2004) Hrobarikova, J., Robert, J.L., Calberg, C., Jerome R., Grandjean, J.: Solid-state NMR study of intercalated spe-cies in poly(ε-caprolactone)/clay nanocomposites. Langmuir, 20(22), 9828–9833 (2004)
183.
go back to reference Kim, M., Park, C., Choi, W., Lee, J., Lim, J., Park, O., Kim, J.: Synthesis and material properties of syndiotactic polystyrene/organophilic clay nanocomposites. J. Appl. Polym. Sci. 92(4), 2144–2150 (2004)CrossRef Kim, M., Park, C., Choi, W., Lee, J., Lim, J., Park, O., Kim, J.: Synthesis and material properties of syndiotactic polystyrene/organophilic clay nanocomposites. J. Appl. Polym. Sci. 92(4), 2144–2150 (2004)CrossRef
184.
go back to reference Xie, W., Xie, R., Pan, W., Hunter, D., Koene, B., Tan, L., Vaia, R.: Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 14(11), 4837–4845 (2002)CrossRef Xie, W., Xie, R., Pan, W., Hunter, D., Koene, B., Tan, L., Vaia, R.: Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 14(11), 4837–4845 (2002)CrossRef
185.
go back to reference Singla, P., Mehta, R., Upadhyay, S.N.: Clay modification by the use of organic cations. Green Sustain. Chem. 2, 21–25 (2012) Singla, P., Mehta, R., Upadhyay, S.N.: Clay modification by the use of organic cations. Green Sustain. Chem. 2, 21–25 (2012)
186.
go back to reference Lin, J.-J., Chan, Y.-N., Lan, Y.-F.: Hydrophobic modification of layered clays and compatibility for epoxy nanocomposites. Materials 3, 2588–2605 (2010) Lin, J.-J., Chan, Y.-N., Lan, Y.-F.: Hydrophobic modification of layered clays and compatibility for epoxy nanocomposites. Materials 3, 2588–2605 (2010)
187.
go back to reference Mahadevaiah, N., Venkataramani, B., Prakash, B.S.J.: Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite-a breakthrough curve study. Chem. Mater. 19, 4606–4612 (2007)CrossRef Mahadevaiah, N., Venkataramani, B., Prakash, B.S.J.: Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite-a breakthrough curve study. Chem. Mater. 19, 4606–4612 (2007)CrossRef
188.
189.
go back to reference Chou, C.C., Chiang, M.L., Lin, J.J.: Unusual intercalation of cationic smectite clays with detergent-ranged carboxylic ions. Macromol. Rapid Commun. 26, 1841–1845 (2005)CrossRef Chou, C.C., Chiang, M.L., Lin, J.J.: Unusual intercalation of cationic smectite clays with detergent-ranged carboxylic ions. Macromol. Rapid Commun. 26, 1841–1845 (2005)CrossRef
190.
go back to reference Vo, V.S., Mahouche-Chergui, S., Babinot, J., Nguyen, V.H., Naili, S., Carbonnier, B.: Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers. RSC Adv. 6, 89322–89327 (2016)CrossRef Vo, V.S., Mahouche-Chergui, S., Babinot, J., Nguyen, V.H., Naili, S., Carbonnier, B.: Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers. RSC Adv. 6, 89322–89327 (2016)CrossRef
191.
go back to reference Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28, 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28, 1–63 (2000)CrossRef
192.
go back to reference Beyer, G.: Nanocomposites: a new class of flame retardants for polymers. Plast. Addit. Compd. 4, 22–28 (2002)CrossRef Beyer, G.: Nanocomposites: a new class of flame retardants for polymers. Plast. Addit. Compd. 4, 22–28 (2002)CrossRef
193.
go back to reference Gurses, A.: Introduction to Polymer-Clay Nanocomposites; Pan Stanford: Singapore, 54 (2015). Fischer, H., Gielgens, L., Koster, T.: Nanocomposites from polymers and layered minerals. Acta Polym. 50, 122–126 (1999) Gurses, A.: Introduction to Polymer-Clay Nanocomposites; Pan Stanford: Singapore, 54 (2015). Fischer, H., Gielgens, L., Koster, T.: Nanocomposites from polymers and layered minerals. Acta Polym. 50, 122–126 (1999)
194.
go back to reference Mittal, V.: Advances in Polyolefin Nanocomposites. CRC Press, Boca Raton, FL, USA (2010)CrossRef Mittal, V.: Advances in Polyolefin Nanocomposites. CRC Press, Boca Raton, FL, USA (2010)CrossRef
195.
go back to reference Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay–polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, pp. 113–144 (2017) Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay–polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, pp. 113–144 (2017)
196.
go back to reference Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Meghabar, R.: Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 48, 188–198 (2018)CrossRef Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Meghabar, R.: Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 48, 188–198 (2018)CrossRef
197.
go back to reference Lopez-Manchado, M., Herrero, B., Arroyo, M.: Organoclay–natural rubber nanocomposites synthesized by mechanical and solution mixing methods. Polym. Int. 53, 1766–1772 (2004)CrossRef Lopez-Manchado, M., Herrero, B., Arroyo, M.: Organoclay–natural rubber nanocomposites synthesized by mechanical and solution mixing methods. Polym. Int. 53, 1766–1772 (2004)CrossRef
198.
go back to reference Vassiljeva, V., Kirikal, K.-K., Hietala, S., Kaljuvee, T., Mikli, V., Rähn, M., Tarasova, E., Krasnou, I., Viirsalu, M., Savest, N.: One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranes. Fullerenes Nanotub. Carbon Nanostruct. 25, 667–677 (2017)CrossRef Vassiljeva, V., Kirikal, K.-K., Hietala, S., Kaljuvee, T., Mikli, V., Rähn, M., Tarasova, E., Krasnou, I., Viirsalu, M., Savest, N.: One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranes. Fullerenes Nanotub. Carbon Nanostruct. 25, 667–677 (2017)CrossRef
199.
go back to reference Lago, E., Toth, P.S., Pugliese, G., Pellegrini, V., Bonaccorso, F.: Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv. 6, 97931–97940 (2016)CrossRef Lago, E., Toth, P.S., Pugliese, G., Pellegrini, V., Bonaccorso, F.: Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv. 6, 97931–97940 (2016)CrossRef
200.
go back to reference Abbasian, M., Pakzad, M., Amirmanesh, M.: Polymericaly modified clays to preparation of polystyrene nanocomposite by nitroxide mediated radical polymerization and solution blending methods. Polym. Compos. 38, 1127–1134 (2017)CrossRef Abbasian, M., Pakzad, M., Amirmanesh, M.: Polymericaly modified clays to preparation of polystyrene nanocomposite by nitroxide mediated radical polymerization and solution blending methods. Polym. Compos. 38, 1127–1134 (2017)CrossRef
201.
go back to reference Debnath, D., Dhibar, A.K., Khatua, B.: Studies on the morphology and properties of PMMA-organoclay nanocomposites with reference to the manufacturing techniques. Polym. Plast. Technol. Eng. 49, 1087–1094 (2010)CrossRef Debnath, D., Dhibar, A.K., Khatua, B.: Studies on the morphology and properties of PMMA-organoclay nanocomposites with reference to the manufacturing techniques. Polym. Plast. Technol. Eng. 49, 1087–1094 (2010)CrossRef
202.
go back to reference Ports, B.F., Weiss, R.: One-step melt extrusion process for preparing polyolefin/clay nanocomposites using natural montmorillonite. Ind. Eng. Chem. Res. 49, 11896–11905 (2010)CrossRef Ports, B.F., Weiss, R.: One-step melt extrusion process for preparing polyolefin/clay nanocomposites using natural montmorillonite. Ind. Eng. Chem. Res. 49, 11896–11905 (2010)CrossRef
203.
go back to reference Jollands, M., Gupta, R.K.: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489–1493 (2010) Jollands, M., Gupta, R.K.: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489–1493 (2010)
204.
go back to reference Yarahmadi, N., Jakubowicz, I., Hjertberg, T.: Development of poly(vinyl chloride)/montmorillonite nanocomposites using chelating agents. Polym. Degrad. Stab. 95, 132–137 (2010)CrossRef Yarahmadi, N., Jakubowicz, I., Hjertberg, T.: Development of poly(vinyl chloride)/montmorillonite nanocomposites using chelating agents. Polym. Degrad. Stab. 95, 132–137 (2010)CrossRef
205.
go back to reference Albdiry, M., Yousif, B., Ku, H., Lau, K.: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J. Compos. Mater. 47, 1093–1115 (2013)CrossRef Albdiry, M., Yousif, B., Ku, H., Lau, K.: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J. Compos. Mater. 47, 1093–1115 (2013)CrossRef
206.
go back to reference Ercan, N., Durmus, A., Ka¸sgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30, 950–970 (2017) Ercan, N., Durmus, A., Ka¸sgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30, 950–970 (2017)
207.
go back to reference Quigley, J.P., Baird, D.G.: Improved mechanical properties of organoclay/nylon 6 nanocomposites prepared via a supercritical carbon dioxide-aided, melt blending method. Polym. Compos. 36, 527–537 (2015)CrossRef Quigley, J.P., Baird, D.G.: Improved mechanical properties of organoclay/nylon 6 nanocomposites prepared via a supercritical carbon dioxide-aided, melt blending method. Polym. Compos. 36, 527–537 (2015)CrossRef
208.
go back to reference Huang, Y., Yang, K., Dong, J.Y.: Copolymerization of ethylene and 10-undecen-1-ol using a montmorillonite-intercalated metallocene catalyst: synthesis of polyethylene/montmorillonite nanocomposites with enhanced structural stability. Macromol. Rapid Commun. 27, 1278–1283 (2006)CrossRef Huang, Y., Yang, K., Dong, J.Y.: Copolymerization of ethylene and 10-undecen-1-ol using a montmorillonite-intercalated metallocene catalyst: synthesis of polyethylene/montmorillonite nanocomposites with enhanced structural stability. Macromol. Rapid Commun. 27, 1278–1283 (2006)CrossRef
209.
go back to reference Asensio, M., Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis. Eur. Polym. J. 100, 278–289 (2018)CrossRef Asensio, M., Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis. Eur. Polym. J. 100, 278–289 (2018)CrossRef
210.
go back to reference Ozkose, U.U., Altinkok, C., Yilmaz, O., Alpturk, O., Tasdelen, M.A.: In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur. Polym. J. 88, 586–593 (2017)CrossRef Ozkose, U.U., Altinkok, C., Yilmaz, O., Alpturk, O., Tasdelen, M.A.: In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur. Polym. J. 88, 586–593 (2017)CrossRef
211.
go back to reference Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: Control of molecular weight and polydispersity in polyethylene/needle-like shaped clay nanocomposites obtained by in situ polymerization with metallocene catalysts. Eur. Polym. J. 75, 125–141 (2016)CrossRef Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: Control of molecular weight and polydispersity in polyethylene/needle-like shaped clay nanocomposites obtained by in situ polymerization with metallocene catalysts. Eur. Polym. J. 75, 125–141 (2016)CrossRef
212.
go back to reference Hua, J., Liu, J., Wang, X., Yue, Z., Yang, H., Geng, J., Ding, A.: Structure and properties of a cis-1, 4-polybutadiene/organic montmorillonite nanocomposite prepared via in situ polymerization. J. Macromol. Sci. Part B 56, 451–461 (2017)CrossRef Hua, J., Liu, J., Wang, X., Yue, Z., Yang, H., Geng, J., Ding, A.: Structure and properties of a cis-1, 4-polybutadiene/organic montmorillonite nanocomposite prepared via in situ polymerization. J. Macromol. Sci. Part B 56, 451–461 (2017)CrossRef
213.
go back to reference Dietlin, C., Schweizer, S., Xiao, P., Zhang, J., Morlet-Savary, F., Graff, B., Fouassier, J.-P., Lalevée, J.: Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polym. Chem. 6, 3895–3912 (2015)CrossRef Dietlin, C., Schweizer, S., Xiao, P., Zhang, J., Morlet-Savary, F., Graff, B., Fouassier, J.-P., Lalevée, J.: Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polym. Chem. 6, 3895–3912 (2015)CrossRef
214.
go back to reference Chen, M., Zhong, M., Johnson, J.A.: Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016)CrossRef Chen, M., Zhong, M., Johnson, J.A.: Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016)CrossRef
215.
go back to reference Yagci, Y., Jockusch, S., Turro, N.J.: Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010)CrossRef Yagci, Y., Jockusch, S., Turro, N.J.: Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010)CrossRef
216.
go back to reference Utama, R.H., Drechsler, M., Förster, S., Zetterlund, P.B., Stenzel, M.H.: Synthesis of pH-responsive nanocapsules via inverse miniemulsion periphery RAFT polymerization and post-polymerization reaction. ACS Macro Lett. 3, 935–939 (2014)CrossRef Utama, R.H., Drechsler, M., Förster, S., Zetterlund, P.B., Stenzel, M.H.: Synthesis of pH-responsive nanocapsules via inverse miniemulsion periphery RAFT polymerization and post-polymerization reaction. ACS Macro Lett. 3, 935–939 (2014)CrossRef
217.
go back to reference Beyazit, S., Bui, B.T.S., Haupt, K., Gonzato, C.: Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 62, 1–21 (2016)CrossRef Beyazit, S., Bui, B.T.S., Haupt, K., Gonzato, C.: Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 62, 1–21 (2016)CrossRef
218.
go back to reference Arslan, M., Tasdelen, M.: Polymer Nanocomposites via click chemistry reactions. Polymers 9, 499 (2017)CrossRef Arslan, M., Tasdelen, M.: Polymer Nanocomposites via click chemistry reactions. Polymers 9, 499 (2017)CrossRef
219.
go back to reference Yadav, P., Chacko, S., Kumar, G., Ramapanicker, R., Verma, V.: Click chemistry route to covalently link cellulose and clay. Cellulose 22, 1615–1624 (2015)CrossRef Yadav, P., Chacko, S., Kumar, G., Ramapanicker, R., Verma, V.: Click chemistry route to covalently link cellulose and clay. Cellulose 22, 1615–1624 (2015)CrossRef
220.
go back to reference Xie, H., Wu, Q., Shi, W.: Preparation of photopolymerized nanocomposites through intercalating multifunctional acrylated siloxane into montmorillonite. Appl. Clay Sci. 99, 164–170 (2014)CrossRef Xie, H., Wu, Q., Shi, W.: Preparation of photopolymerized nanocomposites through intercalating multifunctional acrylated siloxane into montmorillonite. Appl. Clay Sci. 99, 164–170 (2014)CrossRef
221.
go back to reference Shanmugam, S., Boyer, C.: Stereo-, temporal and chemical control through photoactivation of living radical polymerization: Synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015)CrossRef Shanmugam, S., Boyer, C.: Stereo-, temporal and chemical control through photoactivation of living radical polymerization: Synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015)CrossRef
222.
go back to reference Zhang, H., Zhu, X., Wu, Y., Song, H., Ba, X.: High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click” chemistry. J. Mater. Sci. 50, 4387–4395 (2015)CrossRef Zhang, H., Zhu, X., Wu, Y., Song, H., Ba, X.: High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click” chemistry. J. Mater. Sci. 50, 4387–4395 (2015)CrossRef
223.
go back to reference Pan, C., Liu, P.: Surface modification of attapulgite nanorods with nitrile butadiene rubber via thiol-ene interfacial click reaction: grafting or crosslinking. Ind. Eng. Chem. Res. 57, 4949–4954 (2018)CrossRef Pan, C., Liu, P.: Surface modification of attapulgite nanorods with nitrile butadiene rubber via thiol-ene interfacial click reaction: grafting or crosslinking. Ind. Eng. Chem. Res. 57, 4949–4954 (2018)CrossRef
224.
go back to reference Gul, S., Kausar, A., Muhammad, B., Jabeen, S.: Research progress on properties and applications of polymer/clay nanocomposite. Polym. Plast. Technol. Eng. 55, 684–703 (2016)CrossRef Gul, S., Kausar, A., Muhammad, B., Jabeen, S.: Research progress on properties and applications of polymer/clay nanocomposite. Polym. Plast. Technol. Eng. 55, 684–703 (2016)CrossRef
225.
go back to reference Kumar, S., Nehra, M., Dilbaghi, N., Tankeshwar, K., Kim, K.H.: Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 80, 1–38 (2018)CrossRef Kumar, S., Nehra, M., Dilbaghi, N., Tankeshwar, K., Kim, K.H.: Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 80, 1–38 (2018)CrossRef
226.
go back to reference Wang, X.-C., Zhu, Q.-S., Dong, B.-B., Wu, H.-H., Liu, C.-T., Shen, C.-Y., … Geng, T.: The effects of nanoclay and deformation conditions on the inelastic behavior of thermoplastic polyurethane foams. Polym. Test. 79, 106043 (2019) Wang, X.-C., Zhu, Q.-S., Dong, B.-B., Wu, H.-H., Liu, C.-T., Shen, C.-Y., … Geng, T.: The effects of nanoclay and deformation conditions on the inelastic behavior of thermoplastic polyurethane foams. Polym. Test. 79, 106043 (2019)
227.
go back to reference Pizzatto, L., Lizot, A., Fiorio, R., Amorim, C.L., Machado, G., Giovanela, M., Zattera, A.J., Crespo, J.S.: Mater. Sci. Eng., C 29, 474 (2009) Pizzatto, L., Lizot, A., Fiorio, R., Amorim, C.L., Machado, G., Giovanela, M., Zattera, A.J., Crespo, J.S.: Mater. Sci. Eng., C 29, 474 (2009)
228.
go back to reference Arenas, J.P., Castaño, J.L., Troncoso, L., Auad, M.L.: Thermoplastic polyurethane/laponite nanocomposite for reducing impact sound in a floating floor. Appl. Acoust. 155, 401–406 (2019)CrossRef Arenas, J.P., Castaño, J.L., Troncoso, L., Auad, M.L.: Thermoplastic polyurethane/laponite nanocomposite for reducing impact sound in a floating floor. Appl. Acoust. 155, 401–406 (2019)CrossRef
229.
go back to reference Pattanayak, A., Jana, S.C.: Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer 46(10), 3275–3288 (2005)CrossRef Pattanayak, A., Jana, S.C.: Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer 46(10), 3275–3288 (2005)CrossRef
230.
go back to reference Barick, A.K., Tripathy, D.K.: Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Appl. Clay Sci. 52(3), 312–321 (2011)CrossRef Barick, A.K., Tripathy, D.K.: Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Appl. Clay Sci. 52(3), 312–321 (2011)CrossRef
231.
go back to reference Mahallati, Paridokht, Arefazar, A., Naderi, Ghasem: Thermoplastic elastomer nanocomposites based on PA6/NBR. Int. Polym. Process.—Int. Polym. Proc. 25, 132–138 (2010)CrossRef Mahallati, Paridokht, Arefazar, A., Naderi, Ghasem: Thermoplastic elastomer nanocomposites based on PA6/NBR. Int. Polym. Process.—Int. Polym. Proc. 25, 132–138 (2010)CrossRef
232.
go back to reference Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRef Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRef
233.
go back to reference Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef
234.
go back to reference Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef
235.
go back to reference Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRef Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRef
236.
go back to reference Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67, 1813–1822 (2007)CrossRef Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67, 1813–1822 (2007)CrossRef
237.
go back to reference Bandaru, P.R.: Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7, 1239–1267 (2007)CrossRef Bandaru, P.R.: Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7, 1239–1267 (2007)CrossRef
238.
go back to reference Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)CrossRef Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
239.
go back to reference Bernholc, J., Brenner, D., Nardelli, M.B., Meunier, V., Roland, C.: Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)CrossRef Bernholc, J., Brenner, D., Nardelli, M.B., Meunier, V., Roland, C.: Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)CrossRef
240.
go back to reference Du, J.H., Bai, J., Cheng, H.M.: The present status and key problems of carbon nanotubes based polymer composites. Express Polym Lett. 1, 253–273 (2007)CrossRef Du, J.H., Bai, J., Cheng, H.M.: The present status and key problems of carbon nanotubes based polymer composites. Express Polym Lett. 1, 253–273 (2007)CrossRef
241.
go back to reference de Heer, W.A.: Nanotubes and the pursuit of applications. MRS Bull. 29, 281–285 (2004)CrossRef de Heer, W.A.: Nanotubes and the pursuit of applications. MRS Bull. 29, 281–285 (2004)CrossRef
242.
go back to reference Uchida, T., Kumar, S.: Single wall carbon nanotube dispersion and exfoliation in polymers. J. Appl. Polym. Sci. 98, 985–989 (2005)CrossRef Uchida, T., Kumar, S.: Single wall carbon nanotube dispersion and exfoliation in polymers. J. Appl. Polym. Sci. 98, 985–989 (2005)CrossRef
243.
go back to reference Steinhauser, D.: Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym. Lett. 6, 927–936 (2012)CrossRef Steinhauser, D.: Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym. Lett. 6, 927–936 (2012)CrossRef
244.
go back to reference Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H.: Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater. Sci. Eng., A 485, 524–531 (2008)CrossRef Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H.: Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater. Sci. Eng., A 485, 524–531 (2008)CrossRef
245.
go back to reference Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: a review. Plasma Sourc. Sci. Technol. 12(2), 205–216 (2003)CrossRef Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: a review. Plasma Sourc. Sci. Technol. 12(2), 205–216 (2003)CrossRef
246.
go back to reference Lin, T., Bajpai, V., Ji, T., Dai, L.: Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003)CrossRef Lin, T., Bajpai, V., Ji, T., Dai, L.: Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003)CrossRef
248.
go back to reference Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRef Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRef
249.
go back to reference Xie, S., Li, W., Pan, Z., Chang, B., Lianfeng, S.: Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61(7), 1153–1158 (2000)CrossRef Xie, S., Li, W., Pan, Z., Chang, B., Lianfeng, S.: Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61(7), 1153–1158 (2000)CrossRef
250.
go back to reference Elliott, J.A., Sandler, J.K.W., Windle, A.H., Young, R.J., Shaffer, M.S.P.: Collapse of single-walled carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92(9), 1–4 (2004)CrossRef Elliott, J.A., Sandler, J.K.W., Windle, A.H., Young, R.J., Shaffer, M.S.P.: Collapse of single-walled carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92(9), 1–4 (2004)CrossRef
252.
go back to reference Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Nature (London) 363, 605 (1993)CrossRef Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Nature (London) 363, 605 (1993)CrossRef
253.
254.
go back to reference Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Nature (London) 388, 756 (1997)CrossRef Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Nature (London) 388, 756 (1997)CrossRef
256.
go back to reference Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguex-Macia, F., Colbert, D.T., Smalley, R.E.: Science 280, 1253 (1998)CrossRef Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguex-Macia, F., Colbert, D.T., Smalley, R.E.: Science 280, 1253 (1998)CrossRef
257.
go back to reference Mamalis, A.G., Vogtländer, L.O.G., Markopoulos, A.: Precis. Eng. 28, 16 (2004)CrossRef Mamalis, A.G., Vogtländer, L.O.G., Markopoulos, A.: Precis. Eng. 28, 16 (2004)CrossRef
258.
go back to reference Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y.: Science 274, 1701 (1996)CrossRef Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y.: Science 274, 1701 (1996)CrossRef
259.
go back to reference Kumar, Mukul, Ando, Yoshinori: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)CrossRef Kumar, Mukul, Ando, Yoshinori: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)CrossRef
264.
go back to reference Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanék, D., Fischer, J.E., Smalley, R.E.: Science 273(1996) 483 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanék, D., Fischer, J.E., Smalley, R.E.: Science 273(1996) 483
265.
go back to reference Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D.: Science 292, 2462 (2001)CrossRef Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D.: Science 292, 2462 (2001)CrossRef
266.
go back to reference Ago, H., Obshima, S., Uchida, K., Yumura, M.: J Phys Chem B 105, 10453 (2001)CrossRef Ago, H., Obshima, S., Uchida, K., Yumura, M.: J Phys Chem B 105, 10453 (2001)CrossRef
267.
go back to reference Fan, S., Liang, W., Dang, H., Franklin, N., Tombler, T., Chapline, M.: Phys E: LowDimensional Syst. Nanostruct. 8(2), 179 (2000)CrossRef Fan, S., Liang, W., Dang, H., Franklin, N., Tombler, T., Chapline, M.: Phys E: LowDimensional Syst. Nanostruct. 8(2), 179 (2000)CrossRef
268.
go back to reference Ebbesen, T.W., Ajayan, P.M., Hiura, H., Tanigaki, K.: Purification of nanotubes. Nature 367(6463), 519 (1994)CrossRef Ebbesen, T.W., Ajayan, P.M., Hiura, H., Tanigaki, K.: Purification of nanotubes. Nature 367(6463), 519 (1994)CrossRef
269.
go back to reference Montoro, L.A., Rosolen, J.M.: A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)CrossRef Montoro, L.A., Rosolen, J.M.: A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)CrossRef
270.
go back to reference Ye, X.R., Chen, L.H., Wang, C., Aubuchon, J.F., Chen, I.C., Gapin, A.I., et al.: Electrochemical modification of vertically aligned carbon nanotube arrays. J. Phys. Chem. B 110(26), 12938–12942 (2006)CrossRef Ye, X.R., Chen, L.H., Wang, C., Aubuchon, J.F., Chen, I.C., Gapin, A.I., et al.: Electrochemical modification of vertically aligned carbon nanotube arrays. J. Phys. Chem. B 110(26), 12938–12942 (2006)CrossRef
271.
go back to reference Sato, Y., Ogawa, T., Motomiya, K., Shinoda, K., Jeyadevan, B., Tohji, K., et al.: Purification of MWCNTs combining wet grinding, hydrothermal treatment, and oxidation. J. Phys. Chem. B 105(17), 3387–3392 (2001)CrossRef Sato, Y., Ogawa, T., Motomiya, K., Shinoda, K., Jeyadevan, B., Tohji, K., et al.: Purification of MWCNTs combining wet grinding, hydrothermal treatment, and oxidation. J. Phys. Chem. B 105(17), 3387–3392 (2001)CrossRef
272.
go back to reference Yu, A.P., Bekyarova, E., Itkis, M.E., Fakhrutdinov, D., Webster, R., Haddon, R.C.: Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc. 128(30), 9902–9908 (2006)CrossRef Yu, A.P., Bekyarova, E., Itkis, M.E., Fakhrutdinov, D., Webster, R., Haddon, R.C.: Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc. 128(30), 9902–9908 (2006)CrossRef
273.
go back to reference Thien-Nga, L., Hernadi, K., Ljubovic, E., Garaj, S., Forro, L.: Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett. 2(12), 1349–1352 (2002)CrossRef Thien-Nga, L., Hernadi, K., Ljubovic, E., Garaj, S., Forro, L.: Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett. 2(12), 1349–1352 (2002)CrossRef
274.
go back to reference Coleman, J.N., Dalton, A.B., Curran, S., et al.: Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12(2), 213–216 (2000)CrossRef Coleman, J.N., Dalton, A.B., Curran, S., et al.: Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12(2), 213–216 (2000)CrossRef
275.
go back to reference Dalton, A.B., Stephan, C., Coleman, J.N., et al.: Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B 104(43), 10012–10016 (2000)CrossRef Dalton, A.B., Stephan, C., Coleman, J.N., et al.: Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B 104(43), 10012–10016 (2000)CrossRef
276.
go back to reference Moore, V.C., Strano, M.S., Haroz, E.H., et al.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)CrossRef Moore, V.C., Strano, M.S., Haroz, E.H., et al.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)CrossRef
288.
go back to reference Zuoli, H., Zhou, G., Byun, J.-H., Lee, S.K., Um, M.-K., Park, B., Chou, T.-W.: Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11, 5884–5890 (2019)CrossRef Zuoli, H., Zhou, G., Byun, J.-H., Lee, S.K., Um, M.-K., Park, B., Chou, T.-W.: Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11, 5884–5890 (2019)CrossRef
289.
go back to reference Fang, C., Yang, R., Zhang, Z., Zhou, X., Lei, W., Cheng, Y., Wang, D.: Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. RSC Adv. 8(16), 8920–8928 (2018)CrossRef Fang, C., Yang, R., Zhang, Z., Zhou, X., Lei, W., Cheng, Y., Wang, D.: Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. RSC Adv. 8(16), 8920–8928 (2018)CrossRef
290.
go back to reference Lepak-Kuc, S., Podsiadły, B., Skalski, A., Janczak, D., Jakubowska, M., Lekawa-Raus, A.: Highly conductive carbon nanotube-thermoplastic polyurethane nanocomposite for smart clothing applications and beyond. Nanomaterials 9(9), 1287 (2019)CrossRef Lepak-Kuc, S., Podsiadły, B., Skalski, A., Janczak, D., Jakubowska, M., Lekawa-Raus, A.: Highly conductive carbon nanotube-thermoplastic polyurethane nanocomposite for smart clothing applications and beyond. Nanomaterials 9(9), 1287 (2019)CrossRef
291.
go back to reference Sun, W.-J., Xu, L., Jia, L.-C., Zhou, C.-G., Xiang, Y., Yin, R.-H., Li, Z.-M.: Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. 107695 (2019) Sun, W.-J., Xu, L., Jia, L.-C., Zhou, C.-G., Xiang, Y., Yin, R.-H., Li, Z.-M.: Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. 107695 (2019)
292.
go back to reference Tran, L., Kim, J.: A comparative study of the thermoplastic polyurethane/carbon nanotube and natural rubber/carbon nanotube composites according to their mechanical and electrical properties. Fibers Polym. 19(9), 1948–1955 (2018)CrossRef Tran, L., Kim, J.: A comparative study of the thermoplastic polyurethane/carbon nanotube and natural rubber/carbon nanotube composites according to their mechanical and electrical properties. Fibers Polym. 19(9), 1948–1955 (2018)CrossRef
293.
go back to reference Kanbur, Y., Tayfun, U.: Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites. J. Thermoplast. Compos. Mater. 31(12), 1661–1675 (2018)CrossRef Kanbur, Y., Tayfun, U.: Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites. J. Thermoplast. Compos. Mater. 31(12), 1661–1675 (2018)CrossRef
294.
go back to reference Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)CrossRef Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)CrossRef
295.
go back to reference A. Geim, This Month in Physics History: October 22, 2004: Discovery of Graphene, APS News, 2009 A. Geim, This Month in Physics History: October 22, 2004: Discovery of Graphene, APS News, 2009
296.
go back to reference Gogotsi, Y., Presser, V.: Carbon Nanomaterials, 2nd edn, Taylor & Francis (2013) Gogotsi, Y., Presser, V.: Carbon Nanomaterials, 2nd edn, Taylor & Francis (2013)
297.
go back to reference Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.J.G., Pruneri, V., Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165–168 (2015)CrossRef Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.J.G., Pruneri, V., Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165–168 (2015)CrossRef
298.
go back to reference Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5(1), 26–41 (2011)CrossRef Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5(1), 26–41 (2011)CrossRef
299.
go back to reference Stadler, J., Schmid, T., Zenobi, R.: Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10), 8442–8448 (2011)CrossRef Stadler, J., Schmid, T., Zenobi, R.: Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10), 8442–8448 (2011)CrossRef
300.
go back to reference Kim, D.W., Kim, Y.H., Jeong, H.S., Jung, H.T.: Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 7(1), 29–34 (2012)CrossRef Kim, D.W., Kim, Y.H., Jeong, H.S., Jung, H.T.: Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 7(1), 29–34 (2012)CrossRef
301.
go back to reference Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)CrossRef Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)CrossRef
302.
go back to reference Wang, W.D., Shen, C.L., Li, S., Min, J.J., Yi, C.L.: Mechanical properties of single layer graphene nanoribbons through bending experimental simulations. AIP Adv. 4(3) (2014) Wang, W.D., Shen, C.L., Li, S., Min, J.J., Yi, C.L.: Mechanical properties of single layer graphene nanoribbons through bending experimental simulations. AIP Adv. 4(3) (2014)
303.
go back to reference Stolyarova, E., Rim, K.T., Ryu, S.M., et al.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9209–9212 (2007)CrossRef Stolyarova, E., Rim, K.T., Ryu, S.M., et al.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9209–9212 (2007)CrossRef
304.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)CrossRef
305.
go back to reference Zhang, Y.B., Tan, Y.W., Stormer, H.L., et al.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005)CrossRef Zhang, Y.B., Tan, Y.W., Stormer, H.L., et al.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005)CrossRef
306.
go back to reference Berger, C., Song, Z.M., Li, T.B., et al.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef Berger, C., Song, Z.M., Li, T.B., et al.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef
307.
go back to reference Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef
308.
go back to reference Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (9–10) 351–355 (2008) Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (9–10) 351–355 (2008)
309.
go back to reference Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)CrossRef Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)CrossRef
310.
go back to reference Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef
311.
go back to reference Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef
312.
go back to reference Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)CrossRef Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)CrossRef
313.
go back to reference Lang, B.: A LEED Study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53, 317–329 (1975)CrossRef Lang, B.: A LEED Study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53, 317–329 (1975)CrossRef
314.
go back to reference Liang, X., et al.: Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano Lett. 9, 467–472 (2009)CrossRef Liang, X., et al.: Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano Lett. 9, 467–472 (2009)CrossRef
315.
go back to reference Rao, C.N.R., Sood, A.K.: Graphene: Synthesis, Properties, and Phenomena. Wiley, Weinheim, Germany (2013) Rao, C.N.R., Sood, A.K.: Graphene: Synthesis, Properties, and Phenomena. Wiley, Weinheim, Germany (2013)
316.
go back to reference Viculis, L.M., Mack, J.J., Mayer, O.M., Hahn, H.T., Kaner, R.B.: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15, 974–978 (2005)CrossRef Viculis, L.M., Mack, J.J., Mayer, O.M., Hahn, H.T., Kaner, R.B.: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15, 974–978 (2005)CrossRef
317.
go back to reference Staudenmaier, L.: VerfahrenzurDarstellung der Graphitsäure. Berichte der DeutschenChemischen Gesellschaft 31, 1481–1487 (1898)CrossRef Staudenmaier, L.: VerfahrenzurDarstellung der Graphitsäure. Berichte der DeutschenChemischen Gesellschaft 31, 1481–1487 (1898)CrossRef
318.
go back to reference Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef
319.
go back to reference Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., Chhowalla, M.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92 (2008) Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., Chhowalla, M.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92 (2008)
320.
go back to reference Shin, H.-J., et al.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)CrossRef Shin, H.-J., et al.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)CrossRef
321.
go back to reference Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J., Guo, S.: Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J. Phys. Chem. C 115, 11957–11961 (2011)CrossRef Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J., Guo, S.: Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J. Phys. Chem. C 115, 11957–11961 (2011)CrossRef
325.
go back to reference Behabtu, N., Lomeda, J., Green, M., Higginbotham, A., Sinitskii, A., Kosynkin, D., Tsentalovich, D., Parra-V.A., Schmidt, J., Kesselman, E., Cohen, Y., Talmon, Y., Tour, J., Pasquali, M.: Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 5, 406–411 (2010). https://doi.org/10.1038/nnano.2010.86 Behabtu, N., Lomeda, J., Green, M., Higginbotham, A., Sinitskii, A., Kosynkin, D., Tsentalovich, D., Parra-V.A., Schmidt, J., Kesselman, E., Cohen, Y., Talmon, Y., Tour, J., Pasquali, M.: Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 5, 406–411 (2010). https://​doi.​org/​10.​1038/​nnano.​2010.​86
326.
go back to reference Lu, W., Liu, S., Qin, X., Wang, L., Tian, J., Luo, Y., … Sun, X.: High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 22(18), 8775 (2012). https://doi.org/10.1039/c2jm16741g Lu, W., Liu, S., Qin, X., Wang, L., Tian, J., Luo, Y., … Sun, X.: High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 22(18), 8775 (2012). https://​doi.​org/​10.​1039/​c2jm16741g
329.
go back to reference Marcano, D.C., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef Marcano, D.C., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef
330.
go back to reference Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2009)CrossRef Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2009)CrossRef
331.
go back to reference Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)CrossRef Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)CrossRef
332.
go back to reference Juang, Z.-Y., et al.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026–2031 (2009)CrossRef Juang, Z.-Y., et al.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026–2031 (2009)CrossRef
333.
go back to reference Eizenberg, M., Blakely, J.M.: Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1979)CrossRef Eizenberg, M., Blakely, J.M.: Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1979)CrossRef
334.
go back to reference Somani, P.R., Somani, S.P., Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56–59 (2006)CrossRef Somani, P.R., Somani, S.P., Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56–59 (2006)CrossRef
335.
go back to reference Li, X., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRef Li, X., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRef
336.
go back to reference Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., Volkov, A.P., Svirko, Y., Jefimovs, K.: DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12, 917–920 (2003)CrossRef Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., Volkov, A.P., Svirko, Y., Jefimovs, K.: DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12, 917–920 (2003)CrossRef
337.
go back to reference Wang, J.J., et al.: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265–1267 (2004)CrossRef Wang, J.J., et al.: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265–1267 (2004)CrossRef
341.
go back to reference Kosynkin, D., Higginbotham, A., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef Kosynkin, D., Higginbotham, A., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef
342.
go back to reference Panchakarla, L.S., et al.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009) Panchakarla, L.S., et al.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)
343.
go back to reference Ci, L., et al.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)CrossRef Ci, L., et al.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)CrossRef
346.
go back to reference 237. Osicka, J., Mrlik, M., Ilcikova, M., Krupa, I., Sobolčiak, P., Plachý, T., Mosnáček, J.: Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. Reactive Function. Polym. 104487 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104487 237. Osicka, J., Mrlik, M., Ilcikova, M., Krupa, I., Sobolčiak, P., Plachý, T., Mosnáček, J.: Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. Reactive Function. Polym. 104487 (2020). https://​doi.​org/​10.​1016/​j.​reactfunctpolym.​2020.​104487
347.
go back to reference 238. Loomis, J., King, B., Burkhead, T., Xu, P., Bessler, N., Terentjev, E., Panchapakesan, B.: Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23(4), 045501 (2012) 238. Loomis, J., King, B., Burkhead, T., Xu, P., Bessler, N., Terentjev, E., Panchapakesan, B.: Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23(4), 045501 (2012)
352.
go back to reference Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4), 2228–2267 (2020) Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4), 2228–2267 (2020)
Metadata
Title
Anisotropic Nanofillers in TPE
Authors
Abhijit Bandyopadhyay
Poulomi Dasgupta
Sayan Basak
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9085-6_2

Premium Partners