Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2020

20-03-2020

Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules

Authors: Gourhari Chakraborty, Prodyut Dhar, Vimal Katiyar, G. Pugazhenthi

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron oxide-decorated cellulose nanocrystal (Fe-CNC) was incorporated into polylactic acid and exfoliated graphene (GR) system (PLA-S-2.5GR) to investigate the impact of Fe-CNC inclusion on the properties of PLA/GR composite and to optimize Fe-CNC loading. Fe-CNC loading of 0.5 wt% (PLA-S-2.5GR-0.5Fe) displayed comparable thermal stability, better dispersion, better mechanical strength and unaltered GR networks inside the composite. Then, PLA-S-2.5GR-0.5Fe was utilized as ethanol sensor. Recycle, reusability and repeatability studies followed by stability analysis after use were conducted. The results clearly demonstrated that PLA-S-2.5GR-0.5Fe is a suitable candidate for ethanol detection. The PLA-based composite film, possibly for the first time, was also successfully used as an electrode for detection of biomolecules such as d-glucose and glycine. The composites showed the potential to generate distinct current–voltage response in the presence of different stimuli of various concentrations that can be utilized to detect and measure different biomolecules and their concentrations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Tamm, A. Hallik, A. Alumaa, V. Sammelselg, Electrochemical properties of polypyrrole/sulphate films. Electrochim. Acta 42, 2929–2934 (1997)CrossRef J. Tamm, A. Hallik, A. Alumaa, V. Sammelselg, Electrochemical properties of polypyrrole/sulphate films. Electrochim. Acta 42, 2929–2934 (1997)CrossRef
2.
go back to reference H. Qi, E. Mäder, J. Liu, Unique water sensors based on carbon nanotube–cellulose composites. Sens. Actuators B 185, 225–230 (2013)CrossRef H. Qi, E. Mäder, J. Liu, Unique water sensors based on carbon nanotube–cellulose composites. Sens. Actuators B 185, 225–230 (2013)CrossRef
3.
go back to reference W. Lei, W. Si, Y. Xu, Z. Gu, Q. Hao, Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim. Acta 181, 707–722 (2014)CrossRef W. Lei, W. Si, Y. Xu, Z. Gu, Q. Hao, Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim. Acta 181, 707–722 (2014)CrossRef
4.
go back to reference M. Gerard, A. Chaubey, B. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002)CrossRef M. Gerard, A. Chaubey, B. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002)CrossRef
5.
go back to reference Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48, 575–580 (2003)CrossRef Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48, 575–580 (2003)CrossRef
6.
go back to reference T. Girija, M. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156, 705–711 (2006)CrossRef T. Girija, M. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156, 705–711 (2006)CrossRef
7.
go back to reference E.S. Kolb, R.A. Gaudiana, P.G. Mehta, A new polymeric triarylamine and its use as a charge transport layer for polymeric LEDs. Macromolecules 29, 2359–2364 (1996)CrossRef E.S. Kolb, R.A. Gaudiana, P.G. Mehta, A new polymeric triarylamine and its use as a charge transport layer for polymeric LEDs. Macromolecules 29, 2359–2364 (1996)CrossRef
8.
go back to reference L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33, 820–852 (2008)CrossRef L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33, 820–852 (2008)CrossRef
9.
go back to reference M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38, 1653–1689 (2013)CrossRef M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38, 1653–1689 (2013)CrossRef
10.
go back to reference R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)CrossRef R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)CrossRef
11.
go back to reference G. Chakraborty, R.B. Valapa, G. Pugazhenthi, V. Katiyar, Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. Int. J. Biol. Macromol. 113, 1080–1091 (2018)CrossRef G. Chakraborty, R.B. Valapa, G. Pugazhenthi, V. Katiyar, Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. Int. J. Biol. Macromol. 113, 1080–1091 (2018)CrossRef
12.
go back to reference G. Chakraborty, A. Gupta, G. Pugazhenthi, V. Katiyar, Facile dispersion of exfoliated graphene/PLA nanocomposites via in situ polycondensation with a melt extrusion process and its rheological studies. J. Appl. Polym. Sci. 135, 46476 (2018)CrossRef G. Chakraborty, A. Gupta, G. Pugazhenthi, V. Katiyar, Facile dispersion of exfoliated graphene/PLA nanocomposites via in situ polycondensation with a melt extrusion process and its rheological studies. J. Appl. Polym. Sci. 135, 46476 (2018)CrossRef
13.
go back to reference F. Mai, Y. Habibi, J.-M. Raquez, P. Dubois, J.F. Feller, T. Peijs, E. Bilotti, Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54, 6818–6823 (2013)CrossRef F. Mai, Y. Habibi, J.-M. Raquez, P. Dubois, J.F. Feller, T. Peijs, E. Bilotti, Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54, 6818–6823 (2013)CrossRef
14.
go back to reference B. Kumar, M. Castro, J.-F. Feller, Poly (lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuators B 161, 621–628 (2012)CrossRef B. Kumar, M. Castro, J.-F. Feller, Poly (lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuators B 161, 621–628 (2012)CrossRef
15.
go back to reference K. Kobashi, T. Villmow, T. Andres, P. Pötschke, Liquid sensing of melt-processed poly (lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators B 134, 787–795 (2008)CrossRef K. Kobashi, T. Villmow, T. Andres, P. Pötschke, Liquid sensing of melt-processed poly (lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators B 134, 787–795 (2008)CrossRef
16.
go back to reference M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing. Trends. Analyt. Chem. 29, 954–965 (2010)CrossRef M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing. Trends. Analyt. Chem. 29, 954–965 (2010)CrossRef
17.
go back to reference P. Pötschke, T. Andres, T. Villmow, S. Pegel, H. Brünig, K. Kobashi, D. Fischer, L. Häussler, Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol. 70, 343–349 (2010)CrossRef P. Pötschke, T. Andres, T. Villmow, S. Pegel, H. Brünig, K. Kobashi, D. Fischer, L. Häussler, Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol. 70, 343–349 (2010)CrossRef
18.
go back to reference H.S. Han, J.-M. You, H. Jeong, S. Jeon, Synthesis of graphene oxide grafted poly (lactic acid) with palladium nanoparticles and its application to serotonin sensing. Appl. Surf. Sci. 284, 438–445 (2013)CrossRef H.S. Han, J.-M. You, H. Jeong, S. Jeon, Synthesis of graphene oxide grafted poly (lactic acid) with palladium nanoparticles and its application to serotonin sensing. Appl. Surf. Sci. 284, 438–445 (2013)CrossRef
19.
go back to reference M.M. Rahman, A. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010)CrossRef M.M. Rahman, A. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010)CrossRef
20.
go back to reference M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)CrossRef M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)CrossRef
21.
go back to reference Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B 191, 86–93 (2014)CrossRef Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B 191, 86–93 (2014)CrossRef
22.
go back to reference Z. Ibupoto, K. Khun, V. Beni, M. Willander, Non-enzymatic glucose sensor based on the novel flower like morphology of nickel oxide. Soft Nanosci. Lett. 3, 46 (2013)CrossRef Z. Ibupoto, K. Khun, V. Beni, M. Willander, Non-enzymatic glucose sensor based on the novel flower like morphology of nickel oxide. Soft Nanosci. Lett. 3, 46 (2013)CrossRef
23.
go back to reference P. Dhar, A. Kumar, V. Katiyar, Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl. Mater. Interfaces 8, 18393–18409 (2016)CrossRef P. Dhar, A. Kumar, V. Katiyar, Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl. Mater. Interfaces 8, 18393–18409 (2016)CrossRef
24.
go back to reference R.B. Valapa, G. Pugazhenthi, V. Katiyar, Effect of graphene content on the properties of poly (lactic acid) nanocomposites. RSC Adv. 5, 28410–28423 (2015)CrossRef R.B. Valapa, G. Pugazhenthi, V. Katiyar, Effect of graphene content on the properties of poly (lactic acid) nanocomposites. RSC Adv. 5, 28410–28423 (2015)CrossRef
25.
go back to reference G. Chakraborty, G. Pugazhenthi, V. Katiyar, Exfoliated graphene-dispersed poly (lactic acid)-based nanocomposite sensors for ethanol detection. Polym. Bull. 76(5), 2367–2386 (2018)CrossRef G. Chakraborty, G. Pugazhenthi, V. Katiyar, Exfoliated graphene-dispersed poly (lactic acid)-based nanocomposite sensors for ethanol detection. Polym. Bull. 76(5), 2367–2386 (2018)CrossRef
26.
go back to reference L. Liu, M.R. Zachariah, S.I. Stoliarov, J. Li, Enhanced thermal decomposition kinetics of poly (lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv. 5, 101745–101750 (2015)CrossRef L. Liu, M.R. Zachariah, S.I. Stoliarov, J. Li, Enhanced thermal decomposition kinetics of poly (lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv. 5, 101745–101750 (2015)CrossRef
27.
go back to reference H. Dong, A.P. Esser-Kahn, P.R. Thakre, J.F. Patrick, N.R. Sottos, S.R. White, J.S. Moore, Chemical treatment of poly (lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Appl. Mater. Interfaces 4, 503–509 (2011)CrossRef H. Dong, A.P. Esser-Kahn, P.R. Thakre, J.F. Patrick, N.R. Sottos, S.R. White, J.S. Moore, Chemical treatment of poly (lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Appl. Mater. Interfaces 4, 503–509 (2011)CrossRef
28.
go back to reference T. Miyata, T. Masuko, Crystallization behaviour of poly (L-lactide). Polymer 39, 5515–5521 (1998)CrossRef T. Miyata, T. Masuko, Crystallization behaviour of poly (L-lactide). Polymer 39, 5515–5521 (1998)CrossRef
29.
go back to reference Q. Yuan, S. Awate, R. Misra, Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur. Polym. J. 42, 1994–2003 (2006)CrossRef Q. Yuan, S. Awate, R. Misra, Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur. Polym. J. 42, 1994–2003 (2006)CrossRef
30.
go back to reference Z. Chu, T. Zhao, L. Li, J. Fan, Y. Qin, Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials 10, 659 (2017)CrossRef Z. Chu, T. Zhao, L. Li, J. Fan, Y. Qin, Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials 10, 659 (2017)CrossRef
31.
go back to reference J.S. Daniels, N. Pourmand, Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19, 1239–1255 (2007)CrossRef J.S. Daniels, N. Pourmand, Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19, 1239–1255 (2007)CrossRef
32.
go back to reference S. Dhillon, R. Kant, Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. J. Chem. Sci. 129, 1277–1292 (2017)CrossRef S. Dhillon, R. Kant, Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. J. Chem. Sci. 129, 1277–1292 (2017)CrossRef
33.
go back to reference B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018)CrossRef B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018)CrossRef
34.
go back to reference P. Djurdjevic, The complexation between iron (III) ion and glycine in nitrate medium. Transit. Met. Chem. 15, 345–350 (1990)CrossRef P. Djurdjevic, The complexation between iron (III) ion and glycine in nitrate medium. Transit. Met. Chem. 15, 345–350 (1990)CrossRef
Metadata
Title
Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules
Authors
Gourhari Chakraborty
Prodyut Dhar
Vimal Katiyar
G. Pugazhenthi
Publication date
20-03-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03036-z

Other articles of this Issue 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Go to the issue