Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2020

16-11-2019

Perfect near-infrared absorption of graphene with hybrid dielectric nanostructures

Authors: Xiyuan Cao, Yijin Zhang, Ziyang Han, Wenfei Li, Guanyu Liu, Zhongying Xue, Yi Jin, Aimin Wu

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Near-infrared perfect wave harvesting of graphene is theoretically and numerically obtained in a hybrid dielectric configuration without assistance of a reflecting mirror. The absorption is increased 43-fold compared to a suspended graphene layer at normal incidence. The mechanism of perfect absorption is based on critical coupling with a guided resonance introduced by a silicon bar array and Fabry–Perot (FP) effect of a silicon oxide layer. This lossless design is expected to find applications to allow the active area with effective generation and fast transport of photocarriers, paving a new way for on-chip small-footprint ultrahigh responsivity and ultrahigh-speed photodetection in silicon photonics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Lin, B.C.P. Sturmberg, K.T. Lin et al., A 90-nm-thick graphene metamaterial for strong and extremely broadba nd absorption of unpolarized light. Nat. Photonics 13(4), 270–276 (2019)CrossRef H. Lin, B.C.P. Sturmberg, K.T. Lin et al., A 90-nm-thick graphene metamaterial for strong and extremely broadba nd absorption of unpolarized light. Nat. Photonics 13(4), 270–276 (2019)CrossRef
2.
go back to reference S. Schuler, D. Schall, D. Neumaier et al., Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5(12), 4758–4763 (2018)CrossRef S. Schuler, D. Schall, D. Neumaier et al., Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5(12), 4758–4763 (2018)CrossRef
3.
go back to reference J. Fang, D. Wang, C.T. DeVault et al., Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17(1), 57–62 (2016)CrossRef J. Fang, D. Wang, C.T. DeVault et al., Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17(1), 57–62 (2016)CrossRef
4.
go back to reference R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRef R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRef
5.
go back to reference T.R. Zhan, F.Y. Zhao, X.H. Hu et al., Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86(16), 165416 (2012)CrossRef T.R. Zhan, F.Y. Zhao, X.H. Hu et al., Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86(16), 165416 (2012)CrossRef
6.
go back to reference X. Zhu, W. Yan, P. Uhd Jepsen et al., Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl. Phys. Lett. 102(13), 131101 (2013)CrossRef X. Zhu, W. Yan, P. Uhd Jepsen et al., Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl. Phys. Lett. 102(13), 131101 (2013)CrossRef
7.
go back to reference S. Kim, M.S. Jang, V.W. Brar, K.W. Mauser, L. Kim, H.A. Atwater, Electronically tunable perfect absorption in graphene. Nano Lett. 18(2), 971–979 (2018)CrossRef S. Kim, M.S. Jang, V.W. Brar, K.W. Mauser, L. Kim, H.A. Atwater, Electronically tunable perfect absorption in graphene. Nano Lett. 18(2), 971–979 (2018)CrossRef
8.
go back to reference F.N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRef F.N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRef
9.
go back to reference P. Ma, Y. Salamin, B. Baeuerle et al., Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6(1), 154–161 (2018)CrossRef P. Ma, Y. Salamin, B. Baeuerle et al., Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6(1), 154–161 (2018)CrossRef
10.
go back to reference F. Xiong, J. Zhang, Z. Zhu et al., Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015)CrossRef F. Xiong, J. Zhang, Z. Zhu et al., Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015)CrossRef
11.
go back to reference H. Lu, B.P. Cumming, M. Gu, Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 40(15), 3647–3650 (2015)CrossRef H. Lu, B.P. Cumming, M. Gu, Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 40(15), 3647–3650 (2015)CrossRef
12.
go back to reference X.T. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRef X.T. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRef
13.
go back to reference N. Youngblood, Y. Anugrah, R. Ma et al., Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14(5), 2741–2746 (2014)CrossRef N. Youngblood, Y. Anugrah, R. Ma et al., Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14(5), 2741–2746 (2014)CrossRef
14.
go back to reference J. Wang, Z. Cheng, Z. Chen et al., High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8(27), 13206–13211 (2016)CrossRef J. Wang, Z. Cheng, Z. Chen et al., High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8(27), 13206–13211 (2016)CrossRef
15.
go back to reference M. Furchi et al., Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012)CrossRef M. Furchi et al., Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012)CrossRef
16.
go back to reference X.T. Gan et al., Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12(11), 5626–5631 (2012)CrossRef X.T. Gan et al., Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12(11), 5626–5631 (2012)CrossRef
17.
go back to reference R.J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker Jr., J. Hone, D. Englund, Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24), 241109 (2013)CrossRef R.J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker Jr., J. Hone, D. Englund, Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24), 241109 (2013)CrossRef
18.
go back to reference J.R. Piper, S.H. Fan, Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)CrossRef J.R. Piper, S.H. Fan, Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)CrossRef
19.
go back to reference Y. Liu, A. Chadha, D. Zhao, J.R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S.H. Fan, F. Xia, W. Zhou, Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl. Phys. Lett. 105, 181105 (2014)CrossRef Y. Liu, A. Chadha, D. Zhao, J.R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S.H. Fan, F. Xia, W. Zhou, Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl. Phys. Lett. 105, 181105 (2014)CrossRef
20.
go back to reference J.R. Piper, V. Liu, S.H. Fan, Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104(25), 251110 (2014)CrossRef J.R. Piper, V. Liu, S.H. Fan, Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104(25), 251110 (2014)CrossRef
21.
go back to reference W. Wang, A. Klots, Y. Yang, W. Li, I.I. Kravchenko, D.P. Briggs, K.I. Bolotin, J. Valentine, Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 106(18), 181104 (2015)CrossRef W. Wang, A. Klots, Y. Yang, W. Li, I.I. Kravchenko, D.P. Briggs, K.I. Bolotin, J. Valentine, Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 106(18), 181104 (2015)CrossRef
22.
go back to reference C.C. Guo, Z.H. Zhu, X.D. Yuan, W.M. Ye, K. Liu, J.F. Zhang, W. Xu, S.Q. Qin, Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv. Opt. Mater. 4(12), 1955–1960 (2016)CrossRef C.C. Guo, Z.H. Zhu, X.D. Yuan, W.M. Ye, K. Liu, J.F. Zhang, W. Xu, S.Q. Qin, Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv. Opt. Mater. 4(12), 1955–1960 (2016)CrossRef
23.
go back to reference Y.S. Fan, C.C. Guo, Z.H. Zhu, W. Xu, F. Wu, X.D. Yuan, S.Q. Qin, Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express 25(12), 13079–13086 (2017)CrossRef Y.S. Fan, C.C. Guo, Z.H. Zhu, W. Xu, F. Wu, X.D. Yuan, S.Q. Qin, Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express 25(12), 13079–13086 (2017)CrossRef
24.
go back to reference J. Wu, Ultra-narrow perfect graphene absorber based on critical coupling. Opt. Commun. 435, 25–29 (2019)CrossRef J. Wu, Ultra-narrow perfect graphene absorber based on critical coupling. Opt. Commun. 435, 25–29 (2019)CrossRef
25.
go back to reference X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 25(22), 27028–27036 (2017)CrossRef X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 25(22), 27028–27036 (2017)CrossRef
26.
go back to reference Y.M. Qing, H.F. Ma, Y.Z. Ren, S. Yu, T.J. Cui, Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Opt. Express 27(4), 5253–5263 (2019)CrossRef Y.M. Qing, H.F. Ma, Y.Z. Ren, S. Yu, T.J. Cui, Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Opt. Express 27(4), 5253–5263 (2019)CrossRef
27.
go back to reference H.A. Haus, Waves and fields in optoelectronics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984) H.A. Haus, Waves and fields in optoelectronics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984)
28.
go back to reference A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)CrossRef A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)CrossRef
29.
go back to reference J.R. Tischler, M.S. Bradley, V. Bulovic, Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31(13), 2045–2047 (2006)CrossRef J.R. Tischler, M.S. Bradley, V. Bulovic, Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31(13), 2045–2047 (2006)CrossRef
30.
go back to reference S.H. Fan, J. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)CrossRef S.H. Fan, J. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)CrossRef
31.
go back to reference V.N. Astratov, I.S. Culshaw, Resonant coupling of near-infrared radiation to photonic band structure waveguides. J. Lightwave Technol. 17(11), 2050–2057 (1999)CrossRef V.N. Astratov, I.S. Culshaw, Resonant coupling of near-infrared radiation to photonic band structure waveguides. J. Lightwave Technol. 17(11), 2050–2057 (1999)CrossRef
32.
go back to reference S.S. Wang, R. Magnusson, J.S. Bagby et al., Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7(8), 1470–1474 (1990)CrossRef S.S. Wang, R. Magnusson, J.S. Bagby et al., Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7(8), 1470–1474 (1990)CrossRef
33.
go back to reference E.D. Palik, Handbook of optical constants of Solids (Academic Press, San Diego, 1998) E.D. Palik, Handbook of optical constants of Solids (Academic Press, San Diego, 1998)
34.
go back to reference M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94(3), 031901 (2009)CrossRef M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94(3), 031901 (2009)CrossRef
35.
go back to reference V. Liu, S. Fan, S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183(10), 2233–2244 (2012)CrossRef V. Liu, S. Fan, S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183(10), 2233–2244 (2012)CrossRef
36.
go back to reference M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A 71, 811 (1981)CrossRef M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A 71, 811 (1981)CrossRef
37.
go back to reference Y. Yang, V.A. Zenin, S.I. Bozhevolnyi, Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 5(5), 1960–1966 (2018)CrossRef Y. Yang, V.A. Zenin, S.I. Bozhevolnyi, Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 5(5), 1960–1966 (2018)CrossRef
Metadata
Title
Perfect near-infrared absorption of graphene with hybrid dielectric nanostructures
Authors
Xiyuan Cao
Yijin Zhang
Ziyang Han
Wenfei Li
Guanyu Liu
Zhongying Xue
Yi Jin
Aimin Wu
Publication date
16-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02549-6

Other articles of this Issue 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Go to the issue