Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

02-04-2018 | Original Article

Application of radial basis functions in solving fuzzy integral equations

Authors: Sh. S. Asari, M. Amirfakhrian, S. Chakraverty

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, a numerical method based on radial basis functions (RBFs) is proposed to approximate the solution of fuzzy integral equations. By applying RBF in fuzzy integral equation, a linear system \(\Psi C=G \) is obtained. Then target function would be approximated by defining coefficient vector C. Error estimation of the method has been shown which is based on exponential convergence rates of RBFs. Finally, validity of the method is illustrated by some examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Park JY, Kwan YC, Jeong JV (1995) Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Sets Syst 72:373–378MathSciNetCrossRef Park JY, Kwan YC, Jeong JV (1995) Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Sets Syst 72:373–378MathSciNetCrossRef
2.
go back to reference Congxin W, Ming M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH Congxin W, Ming M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH
3.
go back to reference Zadeh LA (1983) Linguistic variables, approximate reasoning and disposition. Med Inform 8:173–186CrossRef Zadeh LA (1983) Linguistic variables, approximate reasoning and disposition. Med Inform 8:173–186CrossRef
4.
go back to reference Abbasbandy S, Allahviranloo T (2004) Numerical solution of fuzzy differential equation by Runge–Kutta method. Nonlin Stud 11:117–129MathSciNetMATH Abbasbandy S, Allahviranloo T (2004) Numerical solution of fuzzy differential equation by Runge–Kutta method. Nonlin Stud 11:117–129MathSciNetMATH
5.
go back to reference Babolian E, Sadeghi H, Javadi S (2004) Numerically solution of fuzzy differential equations by Adomian method. Appl Math Comput 149:547–557MathSciNetMATH Babolian E, Sadeghi H, Javadi S (2004) Numerically solution of fuzzy differential equations by Adomian method. Appl Math Comput 149:547–557MathSciNetMATH
6.
go back to reference Bede B (2006) A note on two point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Syst 157:986–989MathSciNetCrossRef Bede B (2006) A note on two point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Syst 157:986–989MathSciNetCrossRef
7.
go back to reference Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:1648–1662MathSciNetCrossRef Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:1648–1662MathSciNetCrossRef
8.
go back to reference Wu C, Ma M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH Wu C, Ma M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH
9.
go back to reference Matloka M (1987) On fuzzy integrals. In: Proceedings of 2nd polish Symposium on interval and fuzzy mathematics, Politechnika Poznansk, pp 167–170 Matloka M (1987) On fuzzy integrals. In: Proceedings of 2nd polish Symposium on interval and fuzzy mathematics, Politechnika Poznansk, pp 167–170
11.
go back to reference Balasubramaniam P, Muthukumar P, Ratnavelu K (2015) Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlin Dyn 80:249–267MathSciNetCrossRef Balasubramaniam P, Muthukumar P, Ratnavelu K (2015) Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlin Dyn 80:249–267MathSciNetCrossRef
12.
go back to reference Dubois D, Prade H (1987) Fuzzy number: an overview. The analysis. CRC Press, Boca Raton, pp 3–39MATH Dubois D, Prade H (1987) Fuzzy number: an overview. The analysis. CRC Press, Boca Raton, pp 3–39MATH
15.
16.
go back to reference Molabahrami A, Shidfar A, Ghyasi A (2011) An analytical method for solving Fredholm fuzzy integral equations of the second kind. Comput Math Appl 61:2754–2761MathSciNetCrossRef Molabahrami A, Shidfar A, Ghyasi A (2011) An analytical method for solving Fredholm fuzzy integral equations of the second kind. Comput Math Appl 61:2754–2761MathSciNetCrossRef
17.
go back to reference Attari H, Yazdani A (2011) A computational method for fuzzy Volterra–Fredholm integral equations. Fuzzy Inf Eng 2:147–156MathSciNetCrossRef Attari H, Yazdani A (2011) A computational method for fuzzy Volterra–Fredholm integral equations. Fuzzy Inf Eng 2:147–156MathSciNetCrossRef
18.
go back to reference Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318MathSciNetCrossRef Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318MathSciNetCrossRef
19.
go back to reference Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702MathSciNetCrossRef Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702MathSciNetCrossRef
20.
go back to reference Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRef Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRef
22.
go back to reference Buhmann MD (2003) Radial basis functions. Cambridge University Press, CambridgeCrossRef Buhmann MD (2003) Radial basis functions. Cambridge University Press, CambridgeCrossRef
23.
24.
go back to reference Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH
25.
go back to reference Stefanini L, Sorinia L, Guerraa ML (2006) Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst 157:2423–2455MathSciNetCrossRef Stefanini L, Sorinia L, Guerraa ML (2006) Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst 157:2423–2455MathSciNetCrossRef
26.
go back to reference Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlin Anal 71:1311–1328CrossRef Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlin Anal 71:1311–1328CrossRef
27.
go back to reference Nieto JJ, Khastan A, Ivaz K (2009) Numerical solutions of fuzzy differential equations under generalized differentiability. Nonlin Anal Hybrid Syst 3:700–707MathSciNetCrossRef Nieto JJ, Khastan A, Ivaz K (2009) Numerical solutions of fuzzy differential equations under generalized differentiability. Nonlin Anal Hybrid Syst 3:700–707MathSciNetCrossRef
29.
go back to reference Diamond P, Kloeden P (1994) Theory and application. Metric spaces of fuzzy sets. World Scientic, SingaporeMATH Diamond P, Kloeden P (1994) Theory and application. Metric spaces of fuzzy sets. World Scientic, SingaporeMATH
30.
go back to reference Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48MathSciNetMATH Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48MathSciNetMATH
31.
go back to reference Friedman M, Ming M, Kandel A (1999) Solutions to fuzzy integral equations with arbitrary kernels. Int J Approx Reason 20:249–262MATH Friedman M, Ming M, Kandel A (1999) Solutions to fuzzy integral equations with arbitrary kernels. Int J Approx Reason 20:249–262MATH
34.
go back to reference Salahshour S, Allahviranloo T (2013) Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model 37:1016–1027MathSciNetCrossRef Salahshour S, Allahviranloo T (2013) Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model 37:1016–1027MathSciNetCrossRef
35.
go back to reference Malinowski MT (2015) Random fuzzy fractional integral equations—theoretical foundations. Fuzzy Sets Syst 265:39–62MathSciNetCrossRef Malinowski MT (2015) Random fuzzy fractional integral equations—theoretical foundations. Fuzzy Sets Syst 265:39–62MathSciNetCrossRef
36.
go back to reference Rivaz A, Bidgoli TA (2016) Solving fuzzy fractional differential equations by a generalized differential transform method. SeMA J 73:149–170MathSciNetCrossRef Rivaz A, Bidgoli TA (2016) Solving fuzzy fractional differential equations by a generalized differential transform method. SeMA J 73:149–170MathSciNetCrossRef
Metadata
Title
Application of radial basis functions in solving fuzzy integral equations
Authors
Sh. S. Asari
M. Amirfakhrian
S. Chakraverty
Publication date
02-04-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3459-4

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner