Skip to main content
Erschienen in: Neural Computing and Applications 10/2019

02.04.2018 | Original Article

Application of radial basis functions in solving fuzzy integral equations

verfasst von: Sh. S. Asari, M. Amirfakhrian, S. Chakraverty

Erschienen in: Neural Computing and Applications | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, a numerical method based on radial basis functions (RBFs) is proposed to approximate the solution of fuzzy integral equations. By applying RBF in fuzzy integral equation, a linear system \(\Psi C=G \) is obtained. Then target function would be approximated by defining coefficient vector C. Error estimation of the method has been shown which is based on exponential convergence rates of RBFs. Finally, validity of the method is illustrated by some examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Park JY, Kwan YC, Jeong JV (1995) Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Sets Syst 72:373–378MathSciNetCrossRef Park JY, Kwan YC, Jeong JV (1995) Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Sets Syst 72:373–378MathSciNetCrossRef
2.
Zurück zum Zitat Congxin W, Ming M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH Congxin W, Ming M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH
3.
Zurück zum Zitat Zadeh LA (1983) Linguistic variables, approximate reasoning and disposition. Med Inform 8:173–186CrossRef Zadeh LA (1983) Linguistic variables, approximate reasoning and disposition. Med Inform 8:173–186CrossRef
4.
Zurück zum Zitat Abbasbandy S, Allahviranloo T (2004) Numerical solution of fuzzy differential equation by Runge–Kutta method. Nonlin Stud 11:117–129MathSciNetMATH Abbasbandy S, Allahviranloo T (2004) Numerical solution of fuzzy differential equation by Runge–Kutta method. Nonlin Stud 11:117–129MathSciNetMATH
5.
Zurück zum Zitat Babolian E, Sadeghi H, Javadi S (2004) Numerically solution of fuzzy differential equations by Adomian method. Appl Math Comput 149:547–557MathSciNetMATH Babolian E, Sadeghi H, Javadi S (2004) Numerically solution of fuzzy differential equations by Adomian method. Appl Math Comput 149:547–557MathSciNetMATH
6.
Zurück zum Zitat Bede B (2006) A note on two point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Syst 157:986–989MathSciNetCrossRef Bede B (2006) A note on two point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Syst 157:986–989MathSciNetCrossRef
7.
Zurück zum Zitat Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:1648–1662MathSciNetCrossRef Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:1648–1662MathSciNetCrossRef
8.
Zurück zum Zitat Wu C, Ma M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH Wu C, Ma M (1990) On the integrals, series and integral equations of fuzzy set-valued functions. J Harbin Inst Technol 21:11–19MATH
9.
Zurück zum Zitat Matloka M (1987) On fuzzy integrals. In: Proceedings of 2nd polish Symposium on interval and fuzzy mathematics, Politechnika Poznansk, pp 167–170 Matloka M (1987) On fuzzy integrals. In: Proceedings of 2nd polish Symposium on interval and fuzzy mathematics, Politechnika Poznansk, pp 167–170
11.
Zurück zum Zitat Balasubramaniam P, Muthukumar P, Ratnavelu K (2015) Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlin Dyn 80:249–267MathSciNetCrossRef Balasubramaniam P, Muthukumar P, Ratnavelu K (2015) Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlin Dyn 80:249–267MathSciNetCrossRef
12.
Zurück zum Zitat Dubois D, Prade H (1987) Fuzzy number: an overview. The analysis. CRC Press, Boca Raton, pp 3–39MATH Dubois D, Prade H (1987) Fuzzy number: an overview. The analysis. CRC Press, Boca Raton, pp 3–39MATH
15.
Zurück zum Zitat Friedman M, Ma M, Kandel A (1996) Numerical methods for calculating the fuzzy integral. Fuzzy Sets Syst 83:57–62MathSciNetCrossRef Friedman M, Ma M, Kandel A (1996) Numerical methods for calculating the fuzzy integral. Fuzzy Sets Syst 83:57–62MathSciNetCrossRef
16.
Zurück zum Zitat Molabahrami A, Shidfar A, Ghyasi A (2011) An analytical method for solving Fredholm fuzzy integral equations of the second kind. Comput Math Appl 61:2754–2761MathSciNetCrossRef Molabahrami A, Shidfar A, Ghyasi A (2011) An analytical method for solving Fredholm fuzzy integral equations of the second kind. Comput Math Appl 61:2754–2761MathSciNetCrossRef
17.
Zurück zum Zitat Attari H, Yazdani A (2011) A computational method for fuzzy Volterra–Fredholm integral equations. Fuzzy Inf Eng 2:147–156MathSciNetCrossRef Attari H, Yazdani A (2011) A computational method for fuzzy Volterra–Fredholm integral equations. Fuzzy Inf Eng 2:147–156MathSciNetCrossRef
18.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318MathSciNetCrossRef Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318MathSciNetCrossRef
19.
Zurück zum Zitat Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702MathSciNetCrossRef Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702MathSciNetCrossRef
20.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRef Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRef
21.
22.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions. Cambridge University Press, CambridgeCrossRef Buhmann MD (2003) Radial basis functions. Cambridge University Press, CambridgeCrossRef
23.
Zurück zum Zitat Fasshauer GE, Zhang JG (2007) On choosing optimal shape parameters for RBF approximation. Numer Alg 45:346–68MathSciNetCrossRef Fasshauer GE, Zhang JG (2007) On choosing optimal shape parameters for RBF approximation. Numer Alg 45:346–68MathSciNetCrossRef
24.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, CambridgeMATH
25.
Zurück zum Zitat Stefanini L, Sorinia L, Guerraa ML (2006) Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst 157:2423–2455MathSciNetCrossRef Stefanini L, Sorinia L, Guerraa ML (2006) Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst 157:2423–2455MathSciNetCrossRef
26.
Zurück zum Zitat Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlin Anal 71:1311–1328CrossRef Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlin Anal 71:1311–1328CrossRef
27.
Zurück zum Zitat Nieto JJ, Khastan A, Ivaz K (2009) Numerical solutions of fuzzy differential equations under generalized differentiability. Nonlin Anal Hybrid Syst 3:700–707MathSciNetCrossRef Nieto JJ, Khastan A, Ivaz K (2009) Numerical solutions of fuzzy differential equations under generalized differentiability. Nonlin Anal Hybrid Syst 3:700–707MathSciNetCrossRef
29.
Zurück zum Zitat Diamond P, Kloeden P (1994) Theory and application. Metric spaces of fuzzy sets. World Scientic, SingaporeMATH Diamond P, Kloeden P (1994) Theory and application. Metric spaces of fuzzy sets. World Scientic, SingaporeMATH
30.
Zurück zum Zitat Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48MathSciNetMATH Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48MathSciNetMATH
31.
Zurück zum Zitat Friedman M, Ming M, Kandel A (1999) Solutions to fuzzy integral equations with arbitrary kernels. Int J Approx Reason 20:249–262MATH Friedman M, Ming M, Kandel A (1999) Solutions to fuzzy integral equations with arbitrary kernels. Int J Approx Reason 20:249–262MATH
34.
Zurück zum Zitat Salahshour S, Allahviranloo T (2013) Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model 37:1016–1027MathSciNetCrossRef Salahshour S, Allahviranloo T (2013) Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model 37:1016–1027MathSciNetCrossRef
35.
Zurück zum Zitat Malinowski MT (2015) Random fuzzy fractional integral equations—theoretical foundations. Fuzzy Sets Syst 265:39–62MathSciNetCrossRef Malinowski MT (2015) Random fuzzy fractional integral equations—theoretical foundations. Fuzzy Sets Syst 265:39–62MathSciNetCrossRef
36.
Zurück zum Zitat Rivaz A, Bidgoli TA (2016) Solving fuzzy fractional differential equations by a generalized differential transform method. SeMA J 73:149–170MathSciNetCrossRef Rivaz A, Bidgoli TA (2016) Solving fuzzy fractional differential equations by a generalized differential transform method. SeMA J 73:149–170MathSciNetCrossRef
Metadaten
Titel
Application of radial basis functions in solving fuzzy integral equations
verfasst von
Sh. S. Asari
M. Amirfakhrian
S. Chakraverty
Publikationsdatum
02.04.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3459-4

Weitere Artikel der Ausgabe 10/2019

Neural Computing and Applications 10/2019 Zur Ausgabe