Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Applications and Current Status of Antimicrobial Polymers

Author : Juan Rodríguez-Hernández

Published in: Polymers against Microorganisms

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of antimicrobial polymers has been extended to many different fields mainly due to their improved quality and safety benefits in comparison to traditionally employed biocides. In effect, low-molecular weight antimicrobial agents have important disadvantages including their toxicity to the environment and/or short-term antimicrobial ability. On the contrary, the use of antimicrobial polymers may enhance the effectiveness of some of the currently employed antimicrobial agents while reducing the environmental issues accompanying conventional antimicrobial agents (typically by decreasing the residual toxicity of the agents, increasing their efficacy and selectivity, and extending the life span of the antimicrobial agents).
Taking into account the important advantages that antimicrobial polymers offer, a wide range of classes and applications can be envisaged for these materials. As will be depicted in this chapter, areas that can benefit from the use of antimicrobial polymers include the fabrication of fibers, textile sector, the design of water filtration systems, food packaging, and biomedical and pharmaceutical industries. In particular, focusing in the biomedical field, these polymers can decrease the sufferings of people improving their recovery, therefore offering better life quality.
This chapter will summarize the most important areas of applications in which polymers are at this time playing an important role or can be of potential interest in the near future. Moreover, the current limitations as well as those aspects that require both further investigation and improvements will be depicted focusing in their use for food packaging and food storage as well as for biorelated applications including the fabrication of medical devices, hygienic applications, or surgery equipment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359–84.CrossRef Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359–84.CrossRef
2.
go back to reference Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89:475–92.CrossRef Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89:475–92.CrossRef
3.
go back to reference Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W. Antimicrobial polymers. Adv Healthc Mater. 2014;3:1969–85.CrossRef Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W. Antimicrobial polymers. Adv Healthc Mater. 2014;3:1969–85.CrossRef
4.
go back to reference Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release. 2002;81:57–64.CrossRef Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release. 2002;81:57–64.CrossRef
5.
go back to reference Duncan R, Kopecek J. Soluble synthetic polymers as potential drug carriers. Adv Polym Sci. 1984;57:51–101.CrossRef Duncan R, Kopecek J. Soluble synthetic polymers as potential drug carriers. Adv Polym Sci. 1984;57:51–101.CrossRef
6.
go back to reference Hart E, Azzopardi K, Taing H, Graichen F, Jeffery J, Mayadunne R, et al. Efficacy of antimicrobial polymer coatings in an animal model of bacterial infection associated with foreign body implants. J Antimicrob Chemother. 2010;65:974–80.CrossRef Hart E, Azzopardi K, Taing H, Graichen F, Jeffery J, Mayadunne R, et al. Efficacy of antimicrobial polymer coatings in an animal model of bacterial infection associated with foreign body implants. J Antimicrob Chemother. 2010;65:974–80.CrossRef
7.
go back to reference Madkour AE, Dabkowski JA, Nusslein K, Tew GN. Fast disinfecting antimicrobial surfaces. Langmuir. 2009;25:1060–7.CrossRef Madkour AE, Dabkowski JA, Nusslein K, Tew GN. Fast disinfecting antimicrobial surfaces. Langmuir. 2009;25:1060–7.CrossRef
8.
go back to reference Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98:5981–5.CrossRef Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98:5981–5.CrossRef
9.
go back to reference Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4:46–71.CrossRef Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4:46–71.CrossRef
10.
go back to reference Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–40.CrossRef Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–40.CrossRef
11.
go back to reference Ye YM, Song Q, Mao Y. Single-step fabrication of non-leaching antibacterial surfaces using vapor crosslinking. J Mater Chem. 2011;21:257–62.CrossRef Ye YM, Song Q, Mao Y. Single-step fabrication of non-leaching antibacterial surfaces using vapor crosslinking. J Mater Chem. 2011;21:257–62.CrossRef
12.
go back to reference Ye YM, Song Q, Mao Y. Solventless hybrid grafting of antimicrobial polymers for self-sterilizing surfaces. J Mater Chem. 2011;21:13188–94.CrossRef Ye YM, Song Q, Mao Y. Solventless hybrid grafting of antimicrobial polymers for self-sterilizing surfaces. J Mater Chem. 2011;21:13188–94.CrossRef
13.
go back to reference Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, et al. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006;22:255–62.CrossRef Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, et al. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006;22:255–62.CrossRef
14.
go back to reference Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PFM. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci. 2014;15:11878–921.CrossRef Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PFM. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci. 2014;15:11878–921.CrossRef
15.
go back to reference Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver via layer‐by‐layer assembly of heparin and chitosan‐silver ions complex. J Biomed Mater Res A. 2006;79:665–74.CrossRef Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver via layer‐by‐layer assembly of heparin and chitosan‐silver ions complex. J Biomed Mater Res A. 2006;79:665–74.CrossRef
16.
go back to reference Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.CrossRef Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.CrossRef
17.
go back to reference Xiao B, Wan Y, Zhao M, Liu Y, Zhang S. Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym. 2011;83:144–50.CrossRef Xiao B, Wan Y, Zhao M, Liu Y, Zhang S. Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym. 2011;83:144–50.CrossRef
18.
go back to reference Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P. Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr Res. 2008;343:566–70.CrossRef Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P. Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr Res. 2008;343:566–70.CrossRef
19.
go back to reference Feng Y, Xia W. Preparation, characterization and antibacterial activity of water-soluble O-fumaryl-chitosan. Carbohydr Polym. 2011;83:1169–73.CrossRef Feng Y, Xia W. Preparation, characterization and antibacterial activity of water-soluble O-fumaryl-chitosan. Carbohydr Polym. 2011;83:1169–73.CrossRef
20.
go back to reference Doulabi AH, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92:48–56.CrossRef Doulabi AH, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92:48–56.CrossRef
21.
go back to reference Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS. N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials. 2006;27:2495–501.CrossRef Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS. N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials. 2006;27:2495–501.CrossRef
22.
go back to reference Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol. 2002;3:113–26.CrossRef Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol. 2002;3:113–26.CrossRef
23.
go back to reference Jiang YM, Li YB. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem. 2001;73:139–43.CrossRef Jiang YM, Li YB. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem. 2001;73:139–43.CrossRef
24.
go back to reference Caner C, Vergano PJ, Wiles JL. Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci. 1998;63:1049–53.CrossRef Caner C, Vergano PJ, Wiles JL. Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci. 1998;63:1049–53.CrossRef
25.
go back to reference Ouattara B, Simard RE, Piette G, Bégin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol. 2000;62:139–48.CrossRef Ouattara B, Simard RE, Piette G, Bégin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol. 2000;62:139–48.CrossRef
26.
go back to reference Chen M-C, Yeh GH-C, Chiang B-H. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J Food Process Preserv. 1996;20:379–90.CrossRef Chen M-C, Yeh GH-C, Chiang B-H. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J Food Process Preserv. 1996;20:379–90.CrossRef
27.
go back to reference Cha DS, Chinnan MS. Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr. 2004;44:223–37.CrossRef Cha DS, Chinnan MS. Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr. 2004;44:223–37.CrossRef
28.
go back to reference Debeaufort F, Quezada-Gallo J-A, Delporte B, Voilley A. Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. J Membr Sci. 2000;180:47–55.CrossRef Debeaufort F, Quezada-Gallo J-A, Delporte B, Voilley A. Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. J Membr Sci. 2000;180:47–55.CrossRef
29.
go back to reference Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci. 2002;62:373–80.CrossRef Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci. 2002;62:373–80.CrossRef
30.
go back to reference Suppakul P, Miltz J, Sonneveld K, Bigger SW. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications. J Food Sci. 2003;68:408–20.CrossRef Suppakul P, Miltz J, Sonneveld K, Bigger SW. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications. J Food Sci. 2003;68:408–20.CrossRef
31.
go back to reference Kruijf ND, Beest MV, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD. Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam. 2002;19:144–62.CrossRef Kruijf ND, Beest MV, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD. Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam. 2002;19:144–62.CrossRef
32.
go back to reference Han JH. Antimicrobial food packaging. In: Ahvenainen R, editor. Novel food packaging techniques. Cambridge: Woodhead; 2003. p. 50–70.CrossRef Han JH. Antimicrobial food packaging. In: Ahvenainen R, editor. Novel food packaging techniques. Cambridge: Woodhead; 2003. p. 50–70.CrossRef
33.
go back to reference Ozdemir M, Floros JD. Active food packaging technologies. Crit Rev Food Sci Nutr. 2004;44:185–93.CrossRef Ozdemir M, Floros JD. Active food packaging technologies. Crit Rev Food Sci Nutr. 2004;44:185–93.CrossRef
34.
go back to reference Gibis D, Rieblinger K. Oxygen scavenging films for food application. Procedia Food Sci. 2011;1:229–34.CrossRef Gibis D, Rieblinger K. Oxygen scavenging films for food application. Procedia Food Sci. 2011;1:229–34.CrossRef
35.
go back to reference López-de-Dicastillo C, Gómez-Estaca J, Catalá R, Gavara R, Hernández-Muñoz P. Active antioxidant packaging films: development and effect on lipid stability of brined sardines. Food Chem. 2012;131:1376–84.CrossRef López-de-Dicastillo C, Gómez-Estaca J, Catalá R, Gavara R, Hernández-Muñoz P. Active antioxidant packaging films: development and effect on lipid stability of brined sardines. Food Chem. 2012;131:1376–84.CrossRef
36.
go back to reference Malhotra B, Keshwani A, Kharkwal H. Antimicrobial food packaging: potential and pitfalls. Front Microbiol. 2015;6:611.CrossRef Malhotra B, Keshwani A, Kharkwal H. Antimicrobial food packaging: potential and pitfalls. Front Microbiol. 2015;6:611.CrossRef
37.
go back to reference Varesano A, Vineis C, Aluigi A, Rombaldoni F. Antimicrobial polymers for textile products. In: Science against microbial pathogens: communicating current research and technological advances. vol. 3. 2011. p. 99–110. Varesano A, Vineis C, Aluigi A, Rombaldoni F. Antimicrobial polymers for textile products. In: Science against microbial pathogens: communicating current research and technological advances. vol. 3. 2011. p. 99–110.
38.
go back to reference Shin Y, Yoo DI, Jang J. Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics. J Appl Polym Sci. 2001;80:2495–501.CrossRef Shin Y, Yoo DI, Jang J. Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics. J Appl Polym Sci. 2001;80:2495–501.CrossRef
39.
go back to reference Son YA, Sun G. Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci. 2003;90:2194–9.CrossRef Son YA, Sun G. Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci. 2003;90:2194–9.CrossRef
40.
go back to reference Callewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, Van de Wiele T, Boon N. Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol. 2014;80:6611–9.CrossRef Callewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, Van de Wiele T, Boon N. Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol. 2014;80:6611–9.CrossRef
41.
go back to reference Lee J, Broughton RM, Akdag A, Worley SD, Huang TS. Antimicrobial fibers created via polycarboxylic acid durable press finishing. Text Res J. 2007;77:604–11.CrossRef Lee J, Broughton RM, Akdag A, Worley SD, Huang TS. Antimicrobial fibers created via polycarboxylic acid durable press finishing. Text Res J. 2007;77:604–11.CrossRef
42.
go back to reference Li R, Sun M, Jiang Z, Ren X, Huang TS. N-halamine-bonded cotton fabric with antimicrobial and easy-care properties. Fibers Polym. 2014;15:234–40.CrossRef Li R, Sun M, Jiang Z, Ren X, Huang TS. N-halamine-bonded cotton fabric with antimicrobial and easy-care properties. Fibers Polym. 2014;15:234–40.CrossRef
43.
go back to reference Fu XR, Shen Y, Jiang X, Huang D, Yan YQ. Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr Polym. 2011;85:221–7.CrossRef Fu XR, Shen Y, Jiang X, Huang D, Yan YQ. Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr Polym. 2011;85:221–7.CrossRef
44.
go back to reference Gupta D, Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr Polym. 2007;69:164–71.CrossRef Gupta D, Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr Polym. 2007;69:164–71.CrossRef
45.
go back to reference Öktem T. Surface treatment of cotton fabrics with chitosan. Color Technol. 2003;119:241–6.CrossRef Öktem T. Surface treatment of cotton fabrics with chitosan. Color Technol. 2003;119:241–6.CrossRef
46.
go back to reference Lee S-H, Kim M-J, Park H. Characteristics of cotton fabrics treated with epichlorohydrin and chitosan. J Appl Polym Sci. 2010;117:623–8.CrossRef Lee S-H, Kim M-J, Park H. Characteristics of cotton fabrics treated with epichlorohydrin and chitosan. J Appl Polym Sci. 2010;117:623–8.CrossRef
47.
go back to reference Hsu BB, Klibanov AM. Light-activated covalent coating of cotton with bactericidal hydrophobic polycations. Biomacromolecules. 2011;12:6–9.CrossRef Hsu BB, Klibanov AM. Light-activated covalent coating of cotton with bactericidal hydrophobic polycations. Biomacromolecules. 2011;12:6–9.CrossRef
48.
go back to reference Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials. 2007;28:909–15.CrossRef Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials. 2007;28:909–15.CrossRef
49.
go back to reference El Ola SMA, Kotek R, White WC, Reeve JA, Hauser P, Kim JH. Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates. Polymer. 2004;45:3215–25.CrossRef El Ola SMA, Kotek R, White WC, Reeve JA, Hauser P, Kim JH. Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates. Polymer. 2004;45:3215–25.CrossRef
50.
go back to reference Qun XL, Fang Y, Shan Y, Fu G-D, Liang S, Shengzhe N, et al. Antibacterial nanofibers of self-quaternized block copolymers of 4-vinyl pyridine and pentachlorophenyl acrylate. High Perform Polym. 2010;22(3):359–76.CrossRef Qun XL, Fang Y, Shan Y, Fu G-D, Liang S, Shengzhe N, et al. Antibacterial nanofibers of self-quaternized block copolymers of 4-vinyl pyridine and pentachlorophenyl acrylate. High Perform Polym. 2010;22(3):359–76.CrossRef
51.
go back to reference Ren X, Kou L, Kocer HB, Zhu C, Worley SD, Broughton RM, et al. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A Physicochem Eng Asp. 2008;317:711–6.CrossRef Ren X, Kou L, Kocer HB, Zhu C, Worley SD, Broughton RM, et al. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A Physicochem Eng Asp. 2008;317:711–6.CrossRef
52.
go back to reference Chen-Yu JH, Eberhardt DM, Kincade DH. Antibacterial and laundering properties of AMS and PHMB as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J. 2007;25:258–72.CrossRef Chen-Yu JH, Eberhardt DM, Kincade DH. Antibacterial and laundering properties of AMS and PHMB as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J. 2007;25:258–72.CrossRef
53.
go back to reference Gao Y, Cranston R. An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, Part 1: biocide uptake and antimicrobial activity. J Appl Polym Sci. 2010;117:3075–82.CrossRef Gao Y, Cranston R. An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, Part 1: biocide uptake and antimicrobial activity. J Appl Polym Sci. 2010;117:3075–82.CrossRef
54.
go back to reference Gao Y, Cranston R. An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, part 2: further characterizations of the fabrics. J Appl Polym Sci. 2010;117:2882–7.CrossRef Gao Y, Cranston R. An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, part 2: further characterizations of the fabrics. J Appl Polym Sci. 2010;117:2882–7.CrossRef
55.
go back to reference Seshadri DT, Bhat NV. Synthesis and properties of cotton fabrics modified with polypyrrole. Sen’i Gakkaishi. 2005;61:103–8.CrossRef Seshadri DT, Bhat NV. Synthesis and properties of cotton fabrics modified with polypyrrole. Sen’i Gakkaishi. 2005;61:103–8.CrossRef
56.
go back to reference Seshadri DT, Bhat NV. Use of polyaniline as an antimicrobial agent in textiles. J Fibre Text Res. 2005;30:204–6. Seshadri DT, Bhat NV. Use of polyaniline as an antimicrobial agent in textiles. J Fibre Text Res. 2005;30:204–6.
57.
go back to reference Nonaka T, Uemura Y, Ohse K, Jyono K, Kurihara S. Preparation of resins containing phenol derivatives from chloromethylstyrene-tetraethyleneglycol dimethacrylate copolymer beads and antibacterial activity of resins. J Appl Polym Sci. 1997;66:1621–30.CrossRef Nonaka T, Uemura Y, Ohse K, Jyono K, Kurihara S. Preparation of resins containing phenol derivatives from chloromethylstyrene-tetraethyleneglycol dimethacrylate copolymer beads and antibacterial activity of resins. J Appl Polym Sci. 1997;66:1621–30.CrossRef
58.
go back to reference Eknoian MW, Worley SD. New N-halamine biocidal polymers. J Bioact Compat Polym. 1998;13:303–14. Eknoian MW, Worley SD. New N-halamine biocidal polymers. J Bioact Compat Polym. 1998;13:303–14.
59.
go back to reference Tyagi M, Singh H. Iodinated P(MMA-NVP): an efficient matrix for disinfection of water. J Appl Polym Sci. 2000;76:1109–16.CrossRef Tyagi M, Singh H. Iodinated P(MMA-NVP): an efficient matrix for disinfection of water. J Appl Polym Sci. 2000;76:1109–16.CrossRef
60.
go back to reference Luo J, Deng Y, Sun Y. Antimicrobial activity and biocompatibility of polyurethane—iodine complexes. J Bioact Compat Polym. 2010;25:185–206.CrossRef Luo J, Deng Y, Sun Y. Antimicrobial activity and biocompatibility of polyurethane—iodine complexes. J Bioact Compat Polym. 2010;25:185–206.CrossRef
61.
go back to reference Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei CI, et al. Biocidal polystyrene beads. III. Comparison of N-halamine and quat functional groups. J Appl Polym Sci. 2004;92:363–7.CrossRef Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei CI, et al. Biocidal polystyrene beads. III. Comparison of N-halamine and quat functional groups. J Appl Polym Sci. 2004;92:363–7.CrossRef
62.
go back to reference Chen YJ, Worley SD, Kim J, Wei CI, Chen TY, Santiago JI, et al. Biocidal poly(styrenehydantoin) beads for disinfection of water. Ind Eng Chem Res. 2003;42:280–4.CrossRef Chen YJ, Worley SD, Kim J, Wei CI, Chen TY, Santiago JI, et al. Biocidal poly(styrenehydantoin) beads for disinfection of water. Ind Eng Chem Res. 2003;42:280–4.CrossRef
63.
go back to reference Gangadharan D, Dhandhala N, Dixit D, Thakur RS, Popat KM, Anand PS. Investigation of solid supported dendrimers for water disinfection. J Appl Polym Sci. 2012;124:1384–91.CrossRef Gangadharan D, Dhandhala N, Dixit D, Thakur RS, Popat KM, Anand PS. Investigation of solid supported dendrimers for water disinfection. J Appl Polym Sci. 2012;124:1384–91.CrossRef
64.
go back to reference Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.CrossRef Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.CrossRef
65.
go back to reference Aviv O, Laout N, Ratner S, Harik O, Kunduru KR, Domb AJ. Controlled iodine release from polyurethane sponges for water decontamination. J Control Release. 2013;172:634–40.CrossRef Aviv O, Laout N, Ratner S, Harik O, Kunduru KR, Domb AJ. Controlled iodine release from polyurethane sponges for water decontamination. J Control Release. 2013;172:634–40.CrossRef
66.
go back to reference Kocer HB, Cerkez I, Worley SD, Broughton RM, Huang TS. N-halamine copolymers for use in antimicrobial paints. ACS Appl Mater Interfaces. 2011;3:3189–94.CrossRef Kocer HB, Cerkez I, Worley SD, Broughton RM, Huang TS. N-halamine copolymers for use in antimicrobial paints. ACS Appl Mater Interfaces. 2011;3:3189–94.CrossRef
67.
go back to reference Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.CrossRef Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.CrossRef
68.
go back to reference Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7:236–41.CrossRef Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7:236–41.CrossRef
69.
go back to reference Mukherjee K, Rivera JJ, Klibanov AM. Practical aspects of hydrophobic polycationic bactericidal “Paints”. Appl Biochem Biotechnol. 2008;151:61–70.CrossRef Mukherjee K, Rivera JJ, Klibanov AM. Practical aspects of hydrophobic polycationic bactericidal “Paints”. Appl Biochem Biotechnol. 2008;151:61–70.CrossRef
70.
go back to reference Eren T, Som A, Rennie JR, Nelson CF, Urgina Y, Nusslein K, et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys. 2008;209:516–24.CrossRef Eren T, Som A, Rennie JR, Nelson CF, Urgina Y, Nusslein K, et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys. 2008;209:516–24.CrossRef
71.
go back to reference Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci Part A Polym Chem. 2003;41:2939–48.CrossRef Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci Part A Polym Chem. 2003;41:2939–48.CrossRef
72.
go back to reference Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release. 2005;103:355–67.CrossRef Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release. 2005;103:355–67.CrossRef
73.
go back to reference Caballero L, Whitehead KA, Allen NS, Verran J. Photoinactivation of Escherichia coli on acrylic paint formulations using fluorescent light. Dyes Pigments. 2010;86:56–62.CrossRef Caballero L, Whitehead KA, Allen NS, Verran J. Photoinactivation of Escherichia coli on acrylic paint formulations using fluorescent light. Dyes Pigments. 2010;86:56–62.CrossRef
74.
go back to reference Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, et al. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res. 2001;58:97–101.CrossRef Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, et al. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res. 2001;58:97–101.CrossRef
75.
go back to reference Cao ZB, Sun YY. Polymeric N-halamine latex emulsions for use in antimicrobial paints. ACS Appl Mater Interfaces. 2009;1:494–504.CrossRef Cao ZB, Sun YY. Polymeric N-halamine latex emulsions for use in antimicrobial paints. ACS Appl Mater Interfaces. 2009;1:494–504.CrossRef
76.
go back to reference Worley SD, Li F, Wu R, Kim J, Wei CI, Williams JF, et al. A novel N-halamine monomer for preparing biocidal polyurethane coatings. Surf Coating Int B Coating Trans. 2003;86:273–7.CrossRef Worley SD, Li F, Wu R, Kim J, Wei CI, Williams JF, et al. A novel N-halamine monomer for preparing biocidal polyurethane coatings. Surf Coating Int B Coating Trans. 2003;86:273–7.CrossRef
77.
go back to reference Liang J, Chen YJ, Ren XH, Wu R, Barnes K, Worley SD, et al. Fabric treated with antimicrobial N-halamine epoxides. Ind Eng Chem Res. 2007;46:6425–9.CrossRef Liang J, Chen YJ, Ren XH, Wu R, Barnes K, Worley SD, et al. Fabric treated with antimicrobial N-halamine epoxides. Ind Eng Chem Res. 2007;46:6425–9.CrossRef
78.
go back to reference Worley SD, Williams DE. Halamine water disinfectants. CRC Crit Rev Environ Contr. 1988;18:133–75.CrossRef Worley SD, Williams DE. Halamine water disinfectants. CRC Crit Rev Environ Contr. 1988;18:133–75.CrossRef
79.
go back to reference Liang J, Barnes K, Akdag A, Worley SD, Lee J, Broughton RM, et al. Improved antimicrobial siloxane. Ind Eng Chem Res. 2007;46:1861–6.CrossRef Liang J, Barnes K, Akdag A, Worley SD, Lee J, Broughton RM, et al. Improved antimicrobial siloxane. Ind Eng Chem Res. 2007;46:1861–6.CrossRef
80.
go back to reference Makal U, Wood L, Ohman DE, Wynne KJ. Polyurethane biocidal polymeric surface modifiers. Biomaterials. 2006;27:1316–26.CrossRef Makal U, Wood L, Ohman DE, Wynne KJ. Polyurethane biocidal polymeric surface modifiers. Biomaterials. 2006;27:1316–26.CrossRef
81.
go back to reference Worley SD, Chen Y, Wang JW, Wu R. Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings. Surf Coating Int B Coating Trans. 2005;88:93–9.CrossRef Worley SD, Chen Y, Wang JW, Wu R. Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings. Surf Coating Int B Coating Trans. 2005;88:93–9.CrossRef
82.
go back to reference Rosenberg LE. Controlled-release antimicrobials for preventing biofilm formation in food and medical applications. New Brunswick: Rutgers University-Graduate School; 2008. Rosenberg LE. Controlled-release antimicrobials for preventing biofilm formation in food and medical applications. New Brunswick: Rutgers University-Graduate School; 2008.
83.
go back to reference Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–23.CrossRef Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–23.CrossRef
84.
go back to reference Grower J, Cooksey K, Getty K. Release of nisin from methylcellulose‐hydroxypropyl methylcellulose film formed on low‐density polyethylene film. J Food Sci. 2004;69:FMS107–11. Grower J, Cooksey K, Getty K. Release of nisin from methylcellulose‐hydroxypropyl methylcellulose film formed on low‐density polyethylene film. J Food Sci. 2004;69:FMS107–11.
85.
go back to reference Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D. Antimicrobial activity of a nisin‐activated plastic film for food packaging. Lett Appl Microbiol. 2005;41:464–9.CrossRef Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D. Antimicrobial activity of a nisin‐activated plastic film for food packaging. Lett Appl Microbiol. 2005;41:464–9.CrossRef
86.
go back to reference Ouattara B, Simard R, Piette G, Begin A, Holley R. Diffusion of acetic and propionic acids from chitosan‐based antimicrobial packaging films. J Food Sci. 2000;65:768–73.CrossRef Ouattara B, Simard R, Piette G, Begin A, Holley R. Diffusion of acetic and propionic acids from chitosan‐based antimicrobial packaging films. J Food Sci. 2000;65:768–73.CrossRef
87.
go back to reference Chi-Zhang Y, Yam KL, Chikindas ML. Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. Int J Food Microbiol. 2004;90:15–22.CrossRef Chi-Zhang Y, Yam KL, Chikindas ML. Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. Int J Food Microbiol. 2004;90:15–22.CrossRef
88.
go back to reference Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends Food Sci Technol. 2004;15:137–42.CrossRef Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends Food Sci Technol. 2004;15:137–42.CrossRef
89.
go back to reference Kim Y-M, Paik H-D, Lee D-S. Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. J Sci Food Agric. 2002;82:998–1002.CrossRef Kim Y-M, Paik H-D, Lee D-S. Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. J Sci Food Agric. 2002;82:998–1002.CrossRef
90.
go back to reference Duan J, Park SI, Daeschel M, Zhao Y. Antimicrobial chitosan‐lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci. 2007;72:M355–62.CrossRef Duan J, Park SI, Daeschel M, Zhao Y. Antimicrobial chitosan‐lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci. 2007;72:M355–62.CrossRef
91.
go back to reference Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53.CrossRef Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53.CrossRef
Metadata
Title
Applications and Current Status of Antimicrobial Polymers
Author
Juan Rodríguez-Hernández
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47961-3_11

Premium Partners