Skip to main content
Top

2014 | OriginalPaper | Chapter

9. Applications of Biochips Fabricated by Femtosecond Lasers

Authors : Koji Sugioka, Ya Cheng

Published in: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ability of femtosecond laser processing to simultaneously fabricate three-dimensional microfluidic, micro-optical, microelectronic, and micromechanic components inside glass microchips provides great advantages over conventional fabrication techniques for fabricating various biochips. This chapter introduces applications of biochips fabricated by femtosecond laser processing to biosensing based on surface-enhanced Raman scattering spectroscopy, efficient mixing of fluids, single cell detection, manipulation and sorting of cells, concentration analysis of liquid samples, and detection and elucidation of the functions of microorganisms and bacteria.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef
2.
go back to reference Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef
3.
go back to reference Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRef Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRef
4.
go back to reference Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRef Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRef
5.
go back to reference Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRef Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRef
6.
go back to reference Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRef Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRef
7.
go back to reference Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef
8.
go back to reference Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRef Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRef
9.
go back to reference Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRef Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRef
10.
go back to reference Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef
11.
go back to reference Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRef Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRef
12.
go back to reference Kiyama S, Tomita T, Matsuo S et al (2009) Laser fabrication and manipulation of an optical rotator embedded inside a transparent solid material. J Laser Micro/Nanoeng 4:18–21CrossRef Kiyama S, Tomita T, Matsuo S et al (2009) Laser fabrication and manipulation of an optical rotator embedded inside a transparent solid material. J Laser Micro/Nanoeng 4:18–21CrossRef
13.
go back to reference Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef
14.
go back to reference Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463 Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463
15.
go back to reference Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of foturan glass. Appl Phys A 93:225–229CrossRef Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of foturan glass. Appl Phys A 93:225–229CrossRef
16.
go back to reference Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes andwaveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRef Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes andwaveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRef
17.
go back to reference Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef
18.
go back to reference Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef
19.
go back to reference Zhou Z, Xu J, He F et al (2010) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser induced co-deposition of silver nanoparticles and fluorescent molecules. Jpn J Appl Phys 49:022703CrossRef Zhou Z, Xu J, He F et al (2010) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser induced co-deposition of silver nanoparticles and fluorescent molecules. Jpn J Appl Phys 49:022703CrossRef
20.
go back to reference Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef
21.
go back to reference Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef
22.
go back to reference Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef
23.
go back to reference Choudhury D, Ramsay WT, Kiss R et al (2012) A 3D mammalian cell separator biochip. Lab Chip 12:948–953CrossRef Choudhury D, Ramsay WT, Kiss R et al (2012) A 3D mammalian cell separator biochip. Lab Chip 12:948–953CrossRef
24.
go back to reference Applegate RW Jr, Squier J, Vestad T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRef Applegate RW Jr, Squier J, Vestad T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRef
25.
go back to reference Brahheri F, Minzioni P, Vazquez RM et al (2012) Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab Chip 12:3779–3784CrossRef Brahheri F, Minzioni P, Vazquez RM et al (2012) Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab Chip 12:3779–3784CrossRef
26.
go back to reference Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef
27.
go back to reference Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRef Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRef
28.
go back to reference Hanada Y, Sugioka K, S-Ishikawa et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115 Hanada Y, Sugioka K, S-Ishikawa et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115
29.
go back to reference Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRef Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRef
30.
go back to reference Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRef Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRef
31.
go back to reference Schaap A, Bellouard Y, Rohrlack T (2011) Biomed. Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRef Schaap A, Bellouard Y, Rohrlack T (2011) Biomed. Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRef
32.
go back to reference Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef
33.
go back to reference Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRef
34.
go back to reference Lan X, Han Y, Wei T et al (2009) Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett 34:2285–2287CrossRef Lan X, Han Y, Wei T et al (2009) Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett 34:2285–2287CrossRef
35.
go back to reference Han Y, Lan X, Wei T et al (2009) Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Appl Phys A 97:721–724CrossRef Han Y, Lan X, Wei T et al (2009) Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Appl Phys A 97:721–724CrossRef
37.
go back to reference Wiggins S, Ottin JM (2004) Foundations of chaotic mixing. Philos Trans R Soc A 362:937–970CrossRefMATH Wiggins S, Ottin JM (2004) Foundations of chaotic mixing. Philos Trans R Soc A 362:937–970CrossRefMATH
38.
go back to reference Carrière P (2007) On a three-dimensional implementation of the baker’s transformation. Phys Fluids 19:118110CrossRef Carrière P (2007) On a three-dimensional implementation of the baker’s transformation. Phys Fluids 19:118110CrossRef
39.
go back to reference Ju Y, Liao Y, Zhang L et al (2012) Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid Nanofluid 11:111–117CrossRef Ju Y, Liao Y, Zhang L et al (2012) Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid Nanofluid 11:111–117CrossRef
40.
go back to reference Lincoln B, Schinkinger S, Travis K et al (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9:703–710CrossRef Lincoln B, Schinkinger S, Travis K et al (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9:703–710CrossRef
Metadata
Title
Applications of Biochips Fabricated by Femtosecond Lasers
Authors
Koji Sugioka
Ya Cheng
Copyright Year
2014
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5541-6_9