Skip to main content
Top

2020 | OriginalPaper | Chapter

Aptamers in Diagnostic and Molecular Imaging Applications

Author : Victoria Calzada

Published in: Aptamers in Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The origin of the term diagnostic comes from the Greek word gnosis, meaning “to know.” In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.
In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.
This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMed Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMed
2.
go back to reference Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMed Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMed
3.
go back to reference Bayat P, Nosrati R, Alibolandi M et al (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155PubMed Bayat P, Nosrati R, Alibolandi M et al (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155PubMed
4.
go back to reference Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689PubMed Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689PubMed
5.
go back to reference Xiang D, Zheng C, Zhou S et al (2015) Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5:1083–1097PubMedPubMedCentral Xiang D, Zheng C, Zhou S et al (2015) Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5:1083–1097PubMedPubMedCentral
6.
go back to reference Zhang Y, Lai B, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24:e941PubMed Zhang Y, Lai B, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24:e941PubMed
7.
go back to reference Bouchard P, Hutabarat R, Thompson K (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257PubMed Bouchard P, Hutabarat R, Thompson K (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257PubMed
8.
go back to reference Kaur H, Bruno J, Kumar A et al (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032PubMedPubMedCentral Kaur H, Bruno J, Kumar A et al (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032PubMedPubMedCentral
9.
go back to reference Chandola C, Kalme S, Casteleijn M et al (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41:535–561PubMed Chandola C, Kalme S, Casteleijn M et al (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41:535–561PubMed
11.
go back to reference Sicco E, Báez J, Margenat J et al (2018) Derivatizations of Sgc8-c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: syntheses, isolations, and physicochemical characterizations. Chem Biol Drug Des 91:74–755 Sicco E, Báez J, Margenat J et al (2018) Derivatizations of Sgc8-c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: syntheses, isolations, and physicochemical characterizations. Chem Biol Drug Des 91:74–755
12.
go back to reference Wang T, Chen C, Larcher L et al (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37:28–50PubMed Wang T, Chen C, Larcher L et al (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37:28–50PubMed
13.
go back to reference Barciszewski J, Medgaard M, Koch T et al (2009) Locked nucleic acid aptamers. Methods Mol Biol 535:165–186PubMed Barciszewski J, Medgaard M, Koch T et al (2009) Locked nucleic acid aptamers. Methods Mol Biol 535:165–186PubMed
14.
go back to reference Steele F, Gold L (2012) The sweet allure of XNA. Nat Biotech 30:624–625 Steele F, Gold L (2012) The sweet allure of XNA. Nat Biotech 30:624–625
15.
go back to reference Cheung Y, Kwok J, Law A et al (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci U S A 110:15967–15972PubMedPubMedCentral Cheung Y, Kwok J, Law A et al (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci U S A 110:15967–15972PubMedPubMedCentral
16.
go back to reference Cheng A, Calabro V, Frankel A (2001) Design of RNA-binding proteins and ligands. Curr Opin Struct Biol 11:478–484PubMed Cheng A, Calabro V, Frankel A (2001) Design of RNA-binding proteins and ligands. Curr Opin Struct Biol 11:478–484PubMed
17.
go back to reference Lakhin A, Tarantul V, Gening L (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43 Lakhin A, Tarantul V, Gening L (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43
18.
go back to reference Darmostuk M, Rimpelova S, Gbelcova H et al (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33:1141–1161PubMed Darmostuk M, Rimpelova S, Gbelcova H et al (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33:1141–1161PubMed
19.
go back to reference Cowperthwaite M, Ellington A (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67:95–102PubMedPubMedCentral Cowperthwaite M, Ellington A (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67:95–102PubMedPubMedCentral
20.
go back to reference Eaton BE (1997) The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol 1:10–16PubMed Eaton BE (1997) The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol 1:10–16PubMed
21.
go back to reference Sacca B, Lacroix L, Mergny JL (2005) The effect of chemical modifications on the thermal stability of different g-quadruplex-forming oligonucleotides. Nucleic Acids Res 33:1182–1192PubMedPubMedCentral Sacca B, Lacroix L, Mergny JL (2005) The effect of chemical modifications on the thermal stability of different g-quadruplex-forming oligonucleotides. Nucleic Acids Res 33:1182–1192PubMedPubMedCentral
22.
go back to reference Schmidt KS, Borkowski S, Kurreck J et al (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32:5757–5765PubMedPubMedCentral Schmidt KS, Borkowski S, Kurreck J et al (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32:5757–5765PubMedPubMedCentral
24.
go back to reference Drabik A, Ner-Kluza J, Mielczarek P et al (2018) Advances in the study of aptamer-protein target identification using the chromatographic approach. J Proteome Res 17:2174–2181PubMed Drabik A, Ner-Kluza J, Mielczarek P et al (2018) Advances in the study of aptamer-protein target identification using the chromatographic approach. J Proteome Res 17:2174–2181PubMed
25.
go back to reference Wiedman GR, Zhao Y, Mustaev A et al (2017) An aptamer-based biosensor for the azole class of antifungal drugs. mSphere 2(4):e00274–e00217PubMedPubMedCentral Wiedman GR, Zhao Y, Mustaev A et al (2017) An aptamer-based biosensor for the azole class of antifungal drugs. mSphere 2(4):e00274–e00217PubMedPubMedCentral
27.
go back to reference Kalra P, Dhiman A, Cho W et al (2018) Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front Mol Biosci 5:41PubMedPubMedCentral Kalra P, Dhiman A, Cho W et al (2018) Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front Mol Biosci 5:41PubMedPubMedCentral
28.
go back to reference Kinghorn A, Fraser L, Lang S et al (2017) Aptamer bioinformatics. Int J Mol Sci 18:e2516PubMed Kinghorn A, Fraser L, Lang S et al (2017) Aptamer bioinformatics. Int J Mol Sci 18:e2516PubMed
29.
go back to reference Röthlisberger P, Hollenstein M (2018) Aptamer chemistry. Adv Drug Deliv Rev 134:3–21PubMed Röthlisberger P, Hollenstein M (2018) Aptamer chemistry. Adv Drug Deliv Rev 134:3–21PubMed
31.
go back to reference Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20:6866–6887PubMedPubMedCentral Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20:6866–6887PubMedPubMedCentral
32.
go back to reference Hori S, Herrera A, Rossi JJ et al (2018) Current advances in aptamers for cancer diagnosis and therapy. Cancers 10:9PubMedCentral Hori S, Herrera A, Rossi JJ et al (2018) Current advances in aptamers for cancer diagnosis and therapy. Cancers 10:9PubMedCentral
33.
go back to reference Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825PubMed Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825PubMed
34.
go back to reference Musumeci D, Platella C, Riccardi C et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers 9(12):174PubMedCentral Musumeci D, Platella C, Riccardi C et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers 9(12):174PubMedCentral
35.
go back to reference di Primo C, Dausse E, Toulmé JJ (2011) Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions. Methods Mol Biol 764:279–300PubMed di Primo C, Dausse E, Toulmé JJ (2011) Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions. Methods Mol Biol 764:279–300PubMed
36.
go back to reference Biancoa M, Sonatob A, de Girolamoc A et al (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens Act B 241:314–320 Biancoa M, Sonatob A, de Girolamoc A et al (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens Act B 241:314–320
37.
go back to reference Wang F, Cao S, Yan R et al (2017) Selectivity/specificity improvement strategies in surface-enhanced Raman spectroscopy analysis. Sensors 17(11):E2689PubMed Wang F, Cao S, Yan R et al (2017) Selectivity/specificity improvement strategies in surface-enhanced Raman spectroscopy analysis. Sensors 17(11):E2689PubMed
38.
go back to reference Kukushkin VI, Ivanov NM, Novoseltseva AA et al (2019) Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One 14:e0216247PubMedPubMedCentral Kukushkin VI, Ivanov NM, Novoseltseva AA et al (2019) Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One 14:e0216247PubMedPubMedCentral
39.
go back to reference Wang Y, Wei H, Li B et al (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun:5220–5222 Wang Y, Wei H, Li B et al (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun:5220–5222
40.
go back to reference Jarczewska M, Górski L, Malinowska E (2016) Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal Methods 8:3861–3877 Jarczewska M, Górski L, Malinowska E (2016) Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal Methods 8:3861–3877
41.
go back to reference Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131PubMed Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131PubMed
42.
go back to reference Radi A, Acero Sánchez J, Baldrich E et al (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124PubMed Radi A, Acero Sánchez J, Baldrich E et al (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124PubMed
43.
go back to reference Ciancio DR, Vargas MR, Thiel WH et al (2018) Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel) 11(3):86 Ciancio DR, Vargas MR, Thiel WH et al (2018) Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel) 11(3):86
44.
go back to reference Healy J, Lewis S, Kurz M et al (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21:2234–2246PubMed Healy J, Lewis S, Kurz M et al (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21:2234–2246PubMed
45.
go back to reference Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics. Drug Discov Today 20(1):147–155PubMed Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics. Drug Discov Today 20(1):147–155PubMed
46.
go back to reference Röthlisberger P, Gasse C, Hollenstein M (2017) Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 18:e2430PubMed Röthlisberger P, Gasse C, Hollenstein M (2017) Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 18:e2430PubMed
47.
go back to reference Ni S, Yao H, Wang L et al (2017) Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci 18:e1683PubMed Ni S, Yao H, Wang L et al (2017) Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci 18:e1683PubMed
48.
go back to reference Eulberg D, Klussmann S (2003) Spiegelmers: biostable aptamers. Chembiochem 4:979–983PubMed Eulberg D, Klussmann S (2003) Spiegelmers: biostable aptamers. Chembiochem 4:979–983PubMed
49.
go back to reference Rofstad EK, Galappathi K, Mathiesen BS (2014) Tumor interstitial fluid pressure – a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 16:586–594PubMedPubMedCentral Rofstad EK, Galappathi K, Mathiesen BS (2014) Tumor interstitial fluid pressure – a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 16:586–594PubMedPubMedCentral
50.
go back to reference Kovacevic K, Gilbert J, Jilma B (2010) Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev 134:36–50 Kovacevic K, Gilbert J, Jilma B (2010) Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev 134:36–50
51.
go back to reference Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21:E1613PubMed Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21:E1613PubMed
52.
go back to reference Lei Y, Qiao Z, Tang J et al (2018) DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics 8:4062–4071PubMedPubMedCentral Lei Y, Qiao Z, Tang J et al (2018) DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics 8:4062–4071PubMedPubMedCentral
53.
go back to reference Lei Y, He X, Tang J (2018) Ultra-pH-responsive split i-motif based aptamer anchoring strategy for specific activatable imaging of acidic tumor microenvironment. Chem Commun 54(73):10288–10291 Lei Y, He X, Tang J (2018) Ultra-pH-responsive split i-motif based aptamer anchoring strategy for specific activatable imaging of acidic tumor microenvironment. Chem Commun 54(73):10288–10291
55.
go back to reference Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333PubMed Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333PubMed
56.
go back to reference Lecchi M, Ottobrini L, Martelli C et al (2007) Instrumentation and probes for molecular and cellular imaging. Q J Nucl Med Mol Imaging 51:111–126PubMed Lecchi M, Ottobrini L, Martelli C et al (2007) Instrumentation and probes for molecular and cellular imaging. Q J Nucl Med Mol Imaging 51:111–126PubMed
57.
go back to reference Hicke B, Stephens A, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678PubMed Hicke B, Stephens A, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678PubMed
58.
go back to reference Bouvier-Müller A, Ducongé F (2018) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106PubMed Bouvier-Müller A, Ducongé F (2018) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106PubMed
60.
go back to reference Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16:925–933 Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16:925–933
61.
62.
go back to reference Haque A, Faizi MSH, Rather JA et al (2017) Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem 25:2017–2034PubMed Haque A, Faizi MSH, Rather JA et al (2017) Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem 25:2017–2034PubMed
63.
go back to reference Hong G, Lee JC, Robinson JT et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846PubMedPubMedCentral Hong G, Lee JC, Robinson JT et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846PubMedPubMedCentral
65.
go back to reference Thompson A, Hughes M, Anastasova S et al (2017) Position paper: the potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat Rev Gastroenterol Hepatol 14:727–738PubMed Thompson A, Hughes M, Anastasova S et al (2017) Position paper: the potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat Rev Gastroenterol Hepatol 14:727–738PubMed
66.
go back to reference Wang T, van dam J (2004) Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin Gastroenterol Hepatol 2:744–753PubMedPubMedCentral Wang T, van dam J (2004) Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin Gastroenterol Hepatol 2:744–753PubMedPubMedCentral
67.
go back to reference Calzada V, Moreno M, Newton J et al (2017) Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: lymphoma and melanoma in vivo proof of concept. Bioorg Med Chem 25:1163–1171PubMed Calzada V, Moreno M, Newton J et al (2017) Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: lymphoma and melanoma in vivo proof of concept. Bioorg Med Chem 25:1163–1171PubMed
68.
go back to reference Farrar C, Christopher M, Hudry E et al (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One 9:e89901PubMedPubMedCentral Farrar C, Christopher M, Hudry E et al (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One 9:e89901PubMedPubMedCentral
69.
go back to reference Calzada V, Báez J, Sicco J et al (2017) Preliminary in vivo characterization of a theranostic aptamer: Sgc8-cDOTA-67Ga. Aptamers 1:19–27 Calzada V, Báez J, Sicco J et al (2017) Preliminary in vivo characterization of a theranostic aptamer: Sgc8-cDOTA-67Ga. Aptamers 1:19–27
70.
go back to reference Wu X, Chen J, Wu M et al (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344PubMedPubMedCentral Wu X, Chen J, Wu M et al (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344PubMedPubMedCentral
71.
go back to reference Wu X, Zhao Z, Bai H et al (2015) Aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–994PubMedPubMedCentral Wu X, Zhao Z, Bai H et al (2015) Aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–994PubMedPubMedCentral
72.
go back to reference Li C, Kuo T, Su H et al (2015) Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep 5:15675PubMedPubMedCentral Li C, Kuo T, Su H et al (2015) Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep 5:15675PubMedPubMedCentral
73.
go back to reference Sharma T, Bruno J, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35:275–301PubMed Sharma T, Bruno J, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35:275–301PubMed
74.
go back to reference Shi H, He X, Wang K et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108:3900–3905PubMedPubMedCentral Shi H, He X, Wang K et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108:3900–3905PubMedPubMedCentral
76.
go back to reference Tang J, Huang N, Zhang X et al (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911PubMedPubMedCentral Tang J, Huang N, Zhang X et al (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911PubMedPubMedCentral
77.
go back to reference Samimi E, Karami P, Ahar M (2017) A review on aptamer conjugated quantum dot nanosystems for cancer imaging and theranostic. J Nanomed Res 5:00117 Samimi E, Karami P, Ahar M (2017) A review on aptamer conjugated quantum dot nanosystems for cancer imaging and theranostic. J Nanomed Res 5:00117
78.
go back to reference Wu P, Yan X (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521PubMed Wu P, Yan X (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521PubMed
79.
go back to reference Zhang C, Ji X, Zhang Y et al (2013) One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85:5843–5849PubMed Zhang C, Ji X, Zhang Y et al (2013) One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85:5843–5849PubMed
80.
go back to reference Kim D, Jeong Y, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696PubMed Kim D, Jeong Y, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696PubMed
81.
go back to reference Kuo T, Lai W, Li C et al (2014) AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res 7:658–669 Kuo T, Lai W, Li C et al (2014) AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res 7:658–669
82.
go back to reference Najjar A, Johnson J, Schellingerhout D (2018) The emerging role of amino acid PET in neuro-oncology. Bioengineering 5:e104PubMed Najjar A, Johnson J, Schellingerhout D (2018) The emerging role of amino acid PET in neuro-oncology. Bioengineering 5:e104PubMed
84.
go back to reference Dulińska-Litewka J, Łazarczyk A, Hałubiec P et al (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 12:E617PubMed Dulińska-Litewka J, Łazarczyk A, Hałubiec P et al (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 12:E617PubMed
85.
go back to reference Zhang Y, Zhang T, Liu M et al (2018) Aptamer-targeted magnetic resonance imaging contrast agents and their applications. J Nanosci Nanotechnol 18:3759–3774PubMed Zhang Y, Zhang T, Liu M et al (2018) Aptamer-targeted magnetic resonance imaging contrast agents and their applications. J Nanosci Nanotechnol 18:3759–3774PubMed
86.
go back to reference Wang A, Bagalkot V, Vasilliou C et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315PubMedPubMedCentral Wang A, Bagalkot V, Vasilliou C et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315PubMedPubMedCentral
87.
go back to reference Yigit M, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417PubMed Yigit M, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417PubMed
88.
go back to reference Li J, You J, Wu C et al (2018) T1-T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine 13:4607–4625PubMedPubMedCentral Li J, You J, Wu C et al (2018) T1-T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine 13:4607–4625PubMedPubMedCentral
89.
go back to reference Yan H, Gao X, Zhang Y et al (2018) Imaging tiny hepatic tumor xenografts via endoglin-targeted paramagnetic/optical nanoprobe. ACS Appl Mater Interfaces 10:17047–17057PubMed Yan H, Gao X, Zhang Y et al (2018) Imaging tiny hepatic tumor xenografts via endoglin-targeted paramagnetic/optical nanoprobe. ACS Appl Mater Interfaces 10:17047–17057PubMed
90.
go back to reference Schutt E, Klein D, Mattrey R et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42:3218–3235PubMed Schutt E, Klein D, Mattrey R et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42:3218–3235PubMed
91.
go back to reference Nakatsuka M, Mattrey R, Esener S et al (2012) Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv Mater 24:6010–6016PubMedPubMedCentral Nakatsuka M, Mattrey R, Esener S et al (2012) Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv Mater 24:6010–6016PubMedPubMedCentral
92.
go back to reference Wang C, Huang Y, Yeh C (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976PubMed Wang C, Huang Y, Yeh C (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976PubMed
93.
go back to reference Gu F, Hu C, Xia Q et al (2018) Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J Nanopart Res 20:303–323PubMedPubMedCentral Gu F, Hu C, Xia Q et al (2018) Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J Nanopart Res 20:303–323PubMedPubMedCentral
94.
go back to reference Townsend D (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955PubMed Townsend D (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955PubMed
95.
go back to reference Tavitian B, Ducongé F, Boisgard R et al (2009) In vivo imaging of oligonucleotidic aptamers. Methods Mol Biol 535:241–259PubMed Tavitian B, Ducongé F, Boisgard R et al (2009) In vivo imaging of oligonucleotidic aptamers. Methods Mol Biol 535:241–259PubMed
96.
go back to reference Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816PubMed Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816PubMed
97.
go back to reference Kim HJ, Park JY, Lee TS (2019) PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS One 14:e0211047PubMedPubMedCentral Kim HJ, Park JY, Lee TS (2019) PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS One 14:e0211047PubMedPubMedCentral
98.
go back to reference Gijs M, Becker G, Plenevaux A et al (2016) Biodistribution of novel 68Ga-radiolabelled HER2 aptamers in mice. J Nucl Med Radiat Ther 7:300 Gijs M, Becker G, Plenevaux A et al (2016) Biodistribution of novel 68Ga-radiolabelled HER2 aptamers in mice. J Nucl Med Radiat Ther 7:300
99.
go back to reference Boisgard R, Kuhnast B, Vonhoff S et al (2005) In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 32:470–477PubMed Boisgard R, Kuhnast B, Vonhoff S et al (2005) In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 32:470–477PubMed
100.
go back to reference Dos Santos S, Rodrigues Corrêa C, Branco de Barros A et al (2015) Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol 42:292–298PubMed Dos Santos S, Rodrigues Corrêa C, Branco de Barros A et al (2015) Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol 42:292–298PubMed
101.
go back to reference Kryza D, Debordeaux F, Azéma L et al (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 11:e0149387PubMedPubMedCentral Kryza D, Debordeaux F, Azéma L et al (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 11:e0149387PubMedPubMedCentral
Metadata
Title
Aptamers in Diagnostic and Molecular Imaging Applications
Author
Victoria Calzada
Copyright Year
2020
DOI
https://doi.org/10.1007/10_2019_115

Premium Partners