Skip to main content
Top

2020 | OriginalPaper | Chapter

Aptamer-Modified Nanoparticles in Medical Applications

Authors : Alina Eilers, Sandra Witt, Johanna Walter

Published in: Aptamers in Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since aptamers have been selected against a broad range of target structures of medical interest and nanoparticles are available with diverse properties, aptamer-modified nanoparticles can be used in various diagnostic and therapeutic applications. While the aptamer is responsible for specificity and affinity of the conjugate, the nanoparticles’ function varies from signal generation in diagnostic approaches to drug loading in drug delivery systems. Within this chapter different medical applications of aptamer-modified nanoparticles will be summarized and underlying principles will be described.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822PubMedCrossRef Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822PubMedCrossRef
3.
go back to reference Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315PubMedPubMedCentralCrossRef Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315PubMedPubMedCentralCrossRef
4.
go back to reference Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242PubMedCrossRef Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242PubMedCrossRef
5.
go back to reference Ferreira CDA, De Barros ALB (2013) Aptamer functionalized nanoparticles for cancer targeting. J Mol Pharm Org Process Res 01(02):1–2 Ferreira CDA, De Barros ALB (2013) Aptamer functionalized nanoparticles for cancer targeting. J Mol Pharm Org Process Res 01(02):1–2
6.
go back to reference Modrejewski J et al (2016) Aptamer-modified polymer nanoparticles for targeted drug delivery. BioNanoMaterials 17(1–2):43–51 Modrejewski J et al (2016) Aptamer-modified polymer nanoparticles for targeted drug delivery. BioNanoMaterials 17(1–2):43–51
7.
go back to reference Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5(10):7796–7804PubMedCrossRef Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5(10):7796–7804PubMedCrossRef
8.
go back to reference Zhu Z et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef Zhu Z et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef
9.
go back to reference Min K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8):2124–2132PubMedCrossRef Min K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8):2124–2132PubMedCrossRef
11.
go back to reference Patel DJ et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272(5):645–664PubMedCrossRef Patel DJ et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272(5):645–664PubMedCrossRef
12.
go back to reference Urmann K, Modrejewski J, Scheper T, Walter J-G (2017) Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials 18(1–2):1–17 Urmann K, Modrejewski J, Scheper T, Walter J-G (2017) Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials 18(1–2):1–17
13.
go back to reference Walter JG, Kökpinar Ö, Friehs K, Stahl F, Scheper T (2008) Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal Chem 80(19):7372–7378PubMedCrossRef Walter JG, Kökpinar Ö, Friehs K, Stahl F, Scheper T (2008) Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal Chem 80(19):7372–7378PubMedCrossRef
14.
go back to reference Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115PubMedCrossRef Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115PubMedCrossRef
15.
go back to reference Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21(12):1613PubMedCentralCrossRef Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21(12):1613PubMedCentralCrossRef
16.
go back to reference Li H et al (2015) Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 87(7):3736–3745PubMedCrossRef Li H et al (2015) Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 87(7):3736–3745PubMedCrossRef
17.
go back to reference Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4(10):6014–6020PubMedCrossRef Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4(10):6014–6020PubMedCrossRef
18.
go back to reference Hsu CL, Chang HT, Chen CT, Wei SC, Shiang YC, Huang CC (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000PubMedCrossRef Hsu CL, Chang HT, Chen CT, Wei SC, Shiang YC, Huang CC (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000PubMedCrossRef
19.
go back to reference Huang SS, Wei SC, Chang HT, Lin HJ, Huang CC (2016) Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. J Control Release 221:9–17PubMedCrossRef Huang SS, Wei SC, Chang HT, Lin HJ, Huang CC (2016) Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. J Control Release 221:9–17PubMedCrossRef
20.
go back to reference Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of Ochratoxin a in corn samples. Molecules 23(2):1–12 Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of Ochratoxin a in corn samples. Molecules 23(2):1–12
21.
go back to reference Wang P et al (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem 59(2):237–242CrossRef Wang P et al (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem 59(2):237–242CrossRef
22.
go back to reference Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39(1):50–66PubMedCrossRef Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39(1):50–66PubMedCrossRef
23.
go back to reference Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650PubMedCrossRef Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650PubMedCrossRef
24.
go back to reference Cheng N et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117:75–83PubMedCrossRefPubMedCentral Cheng N et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117:75–83PubMedCrossRefPubMedCentral
25.
go back to reference Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators B Chem 246:535–553CrossRef Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators B Chem 246:535–553CrossRef
26.
go back to reference Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
28.
go back to reference Walter JG, Petersen S, Stahl F, Scheper T, Barcikowski S (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8(1):21CrossRef Walter JG, Petersen S, Stahl F, Scheper T, Barcikowski S (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8(1):21CrossRef
29.
go back to reference Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces
30.
go back to reference Citartan M, Ch’ng ES, Rozhdestvensky TS, Tang TH (2016) Aptamers as the “capturing” agents in aptamer-based capture assays. Microchem J 128:187–197CrossRef Citartan M, Ch’ng ES, Rozhdestvensky TS, Tang TH (2016) Aptamers as the “capturing” agents in aptamer-based capture assays. Microchem J 128:187–197CrossRef
31.
go back to reference Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45PubMed Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45PubMed
32.
go back to reference Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform au@SiO2 particles by direct silica coating on citrate-capped au nanoparticles. Colloids Surf A Physicochem Eng Asp 392(1):220–224CrossRef Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform au@SiO2 particles by direct silica coating on citrate-capped au nanoparticles. Colloids Surf A Physicochem Eng Asp 392(1):220–224CrossRef
33.
go back to reference Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782PubMedCrossRef Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782PubMedCrossRef
34.
go back to reference Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101(39):14036–14039PubMedCrossRefPubMedCentral Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101(39):14036–14039PubMedCrossRefPubMedCentral
36.
go back to reference Vaitukaitis JL, Braunstein GD, Ross GT (1972) A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol 113(6):751–758PubMedCrossRef Vaitukaitis JL, Braunstein GD, Ross GT (1972) A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol 113(6):751–758PubMedCrossRef
37.
go back to reference Daviaud J et al (1993) Reliability and feasibility of pregnancy home-use tests: laboratory validation and diagnostic evaluation by 638 volunteers. Clin Chem 39(1):53–59PubMedCrossRef Daviaud J et al (1993) Reliability and feasibility of pregnancy home-use tests: laboratory validation and diagnostic evaluation by 638 volunteers. Clin Chem 39(1):53–59PubMedCrossRef
38.
go back to reference Schüling T, Eilers A, Scheper T, Walter J (2018) Aptamer-based lateral flow assays. AIMS Bioeng 5(2):78–102CrossRef Schüling T, Eilers A, Scheper T, Walter J (2018) Aptamer-based lateral flow assays. AIMS Bioeng 5(2):78–102CrossRef
39.
go back to reference Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609PubMedCrossRef Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609PubMedCrossRef
40.
go back to reference Li X, Jiang L, Zhan Q, Qian J, He S (2009) Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf A Physicochem Eng Asp 332:172–179CrossRef Li X, Jiang L, Zhan Q, Qian J, He S (2009) Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf A Physicochem Eng Asp 332:172–179CrossRef
41.
go back to reference Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46(10):3128–3136CrossRef Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46(10):3128–3136CrossRef
42.
go back to reference Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251CrossRef Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251CrossRef
43.
go back to reference Chegel V et al (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116:2683–2690CrossRef Chegel V et al (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116:2683–2690CrossRef
44.
go back to reference Xia F et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841PubMedPubMedCentralCrossRef Xia F et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841PubMedPubMedCentralCrossRef
45.
go back to reference Frohnmeyer E et al (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144:1840PubMedCrossRef Frohnmeyer E et al (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144:1840PubMedCrossRef
46.
go back to reference Liu J, Zeng J, Tian Y, Zhou N (2018) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182CrossRef Liu J, Zeng J, Tian Y, Zhou N (2018) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182CrossRef
47.
go back to reference Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954PubMedCrossRef Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954PubMedCrossRef
48.
go back to reference Zhu Q et al (2017) Colorimetric detection of cholic acid based on an aptamer adsorbed gold nanoprobe. RSC Adv 7(31):19250–19256CrossRef Zhu Q et al (2017) Colorimetric detection of cholic acid based on an aptamer adsorbed gold nanoprobe. RSC Adv 7(31):19250–19256CrossRef
49.
go back to reference Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17b-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571PubMedPubMedCentralCrossRef Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17b-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571PubMedPubMedCentralCrossRef
50.
go back to reference Rafati A, Zarrabi A, Abediankenari S, Aarabi M, Gill P (2018) Sensitive colorimetric assay using insulin g-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R Soc Open Sci 5(3) Rafati A, Zarrabi A, Abediankenari S, Aarabi M, Gill P (2018) Sensitive colorimetric assay using insulin g-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R Soc Open Sci 5(3)
51.
go back to reference Chávez JL, Hagen JA, Kelley-Loughnane N (2017) Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors (Switzerland) 17(4) Chávez JL, Hagen JA, Kelley-Loughnane N (2017) Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors (Switzerland) 17(4)
52.
go back to reference Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J Nanobiotechnol 9:1–13CrossRef Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J Nanobiotechnol 9:1–13CrossRef
54.
go back to reference Musumeci D et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel) 9(12):174 Musumeci D et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel) 9(12):174
56.
go back to reference Rezaei Z, Ranjbar B (2017) Ultra-sensitive, rapid gold nanoparticle-quantum dot plexcitonic self-assembled aptamer-based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci 17(2):165–174PubMedCrossRef Rezaei Z, Ranjbar B (2017) Ultra-sensitive, rapid gold nanoparticle-quantum dot plexcitonic self-assembled aptamer-based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci 17(2):165–174PubMedCrossRef
57.
go back to reference Nanotech O et al (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Biochem Biophys Res Commun 57(2):6130–6139 Nanotech O et al (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Biochem Biophys Res Commun 57(2):6130–6139
58.
go back to reference Zhu D et al (2015) Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF 165 based on Mn-doped ZnS quantum dots. Biosens Bioelectron 74:1053–1060PubMedCrossRef Zhu D et al (2015) Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF 165 based on Mn-doped ZnS quantum dots. Biosens Bioelectron 74:1053–1060PubMedCrossRef
59.
go back to reference Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens Bioelectron 70:299–303PubMedCrossRef Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens Bioelectron 70:299–303PubMedCrossRef
60.
go back to reference Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532PubMedCrossRef Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532PubMedCrossRef
61.
go back to reference Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243PubMedCrossRef Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243PubMedCrossRef
62.
go back to reference Mao J, Xu M, Ji W, Zhang M (2018) Absorbance enhancement of aptamers/GNP enables sensitive protein detection in rat brains. Chem Commun 54(10):1193–1196CrossRef Mao J, Xu M, Ji W, Zhang M (2018) Absorbance enhancement of aptamers/GNP enables sensitive protein detection in rat brains. Chem Commun 54(10):1193–1196CrossRef
63.
go back to reference Panczyk T, Konczak L, Zapotoczny S, Szabelski P, Nowakowska M (2015) Molecular dynamics simulations of proton transverse relaxation times in suspensions of magnetic nanoparticles. J Colloid Interface Sci 437:187–196PubMedCrossRef Panczyk T, Konczak L, Zapotoczny S, Szabelski P, Nowakowska M (2015) Molecular dynamics simulations of proton transverse relaxation times in suspensions of magnetic nanoparticles. J Colloid Interface Sci 437:187–196PubMedCrossRef
64.
go back to reference Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799 Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799
65.
go back to reference Wei B, Mao K, Liu N, Zhang M, Yang Z (2018) Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron 121:41–46PubMedCrossRef Wei B, Mao K, Liu N, Zhang M, Yang Z (2018) Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron 121:41–46PubMedCrossRef
66.
go back to reference Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7(1):1016 Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7(1):1016
67.
go back to reference Selvolini G et al (2018) DNA-based sensor for the detection of an organophosphorus pesticide: profenofos. Sensors 18(7):2035 Selvolini G et al (2018) DNA-based sensor for the detection of an organophosphorus pesticide: profenofos. Sensors 18(7):2035
68.
go back to reference Mir TA, Yoon JH, Gurudatt NG, Won MS, Shim YB (2015) Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens Bioelectron 74:594–600PubMedCrossRef Mir TA, Yoon JH, Gurudatt NG, Won MS, Shim YB (2015) Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens Bioelectron 74:594–600PubMedCrossRef
69.
go back to reference Zhu Y, Chandra P, Shim YB (2013) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064PubMedCrossRef Zhu Y, Chandra P, Shim YB (2013) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064PubMedCrossRef
70.
go back to reference Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783CrossRef Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783CrossRef
71.
go back to reference Wu L et al (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183(6):1873–1880CrossRef Wu L et al (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183(6):1873–1880CrossRef
72.
go back to reference Zhang HR, Xia XH, Xu JJ, Chen HY (2012) Sensitive cancer cell detection based on Au nanoparticles enhanced electrochemiluminescence of CdS nanocrystal film supplemented by magnetic separation. Electrochem Commun 25(1):112–115CrossRef Zhang HR, Xia XH, Xu JJ, Chen HY (2012) Sensitive cancer cell detection based on Au nanoparticles enhanced electrochemiluminescence of CdS nanocrystal film supplemented by magnetic separation. Electrochem Commun 25(1):112–115CrossRef
73.
go back to reference Tan J et al (2016) Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett 11(1) Tan J et al (2016) Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett 11(1)
74.
go back to reference Yu M et al (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89(7):4085–4090PubMedCrossRef Yu M et al (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89(7):4085–4090PubMedCrossRef
75.
go back to reference Wang J et al (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929PubMedCrossRef Wang J et al (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929PubMedCrossRef
76.
go back to reference Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C (2017) Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Microchim Acta 184(5):1499–1508CrossRef Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C (2017) Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Microchim Acta 184(5):1499–1508CrossRef
77.
go back to reference Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136PubMedCrossRef Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136PubMedCrossRef
78.
go back to reference Dai P-P, Li J-Y, Yu T, Xu J-J, Chen H-Y (2015) Nanocrystal-based electrochemiluminescence sensor for cell detection with Au nanoparticles and isothermal circular double-assisted signal amplification. Talanta 141:97–102PubMedCrossRef Dai P-P, Li J-Y, Yu T, Xu J-J, Chen H-Y (2015) Nanocrystal-based electrochemiluminescence sensor for cell detection with Au nanoparticles and isothermal circular double-assisted signal amplification. Talanta 141:97–102PubMedCrossRef
80.
go back to reference Mu C et al (2013) Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J Microencapsul 30(7):701–708PubMedCrossRef Mu C et al (2013) Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J Microencapsul 30(7):701–708PubMedCrossRef
81.
82.
go back to reference Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361CrossRefPubMedPubMedCentral Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361CrossRefPubMedPubMedCentral
83.
go back to reference Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRef Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRef
84.
go back to reference Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271PubMedCrossRef Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271PubMedCrossRef
85.
go back to reference Zhou J, Rossi JJ (2014) Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids 3:e169 Zhou J, Rossi JJ (2014) Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids 3:e169
86.
go back to reference Taghdisi SM et al (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761CrossRef Taghdisi SM et al (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761CrossRef
87.
go back to reference Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966PubMedCrossRef Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966PubMedCrossRef
88.
go back to reference Bangham AD, De Gier J, Greville GD (1967) Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids 1(3):225–246CrossRef Bangham AD, De Gier J, Greville GD (1967) Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids 1(3):225–246CrossRef
89.
go back to reference Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308(1):250–258PubMedCrossRef Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308(1):250–258PubMedCrossRef
90.
go back to reference Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675PubMedCrossRef Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675PubMedCrossRef
91.
go back to reference Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251CrossRef Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251CrossRef
92.
go back to reference Li L et al (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35(12):3840–3850PubMedCrossRef Li L et al (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35(12):3840–3850PubMedCrossRef
93.
go back to reference Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRef Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRef
94.
go back to reference Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913CrossRef Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913CrossRef
95.
go back to reference Gao H et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33(20):5115–5123PubMedCrossRef Gao H et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33(20):5115–5123PubMedCrossRef
96.
go back to reference Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates. Cancer Res 64(21):7668–7672PubMedCrossRef Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates. Cancer Res 64(21):7668–7672PubMedCrossRef
97.
go back to reference Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci 107(42):17939–17944PubMedCrossRefPubMedCentral Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci 107(42):17939–17944PubMedCrossRefPubMedCentral
98.
go back to reference Tao W et al (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6(4):470–484PubMedPubMedCentralCrossRef Tao W et al (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6(4):470–484PubMedPubMedCentralCrossRef
99.
go back to reference Seleci M, Ag Seleci D, Joncyzk R, Stahl F, Blume C, Scheper T (2016) Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials 17(1–2):33–41 Seleci M, Ag Seleci D, Joncyzk R, Stahl F, Blume C, Scheper T (2016) Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials 17(1–2):33–41
101.
go back to reference Yu C et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6(9):1–8 Yu C et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6(9):1–8
102.
go back to reference Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:1–12CrossRef Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:1–12CrossRef
103.
go back to reference He X, Zhao Y, He D, Wang K, Xu F, Tang J (2012) ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 28(35):12909–12915PubMedCrossRef He X, Zhao Y, He D, Wang K, Xu F, Tang J (2012) ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 28(35):12909–12915PubMedCrossRef
104.
go back to reference Le Li L, Yin Q, Cheng J, Lu Y (2012) Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv Healthc Mater 1(5):567–572PubMedCrossRef Le Li L, Yin Q, Cheng J, Lu Y (2012) Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv Healthc Mater 1(5):567–572PubMedCrossRef
105.
go back to reference Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133(5):1278–1281PubMedCrossRef Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133(5):1278–1281PubMedCrossRef
106.
go back to reference Chen H, Tian J, Liu D, He W, Guo Z (2017) Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B 5(5):972–979PubMedCrossRef Chen H, Tian J, Liu D, He W, Guo Z (2017) Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B 5(5):972–979PubMedCrossRef
107.
go back to reference Cohen BA, Bergkvist M (2013) Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J Photochem Photobiol B Biol 121:67–74CrossRef Cohen BA, Bergkvist M (2013) Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J Photochem Photobiol B Biol 121:67–74CrossRef
108.
go back to reference Farokhzad OC, Jon S, Khademhosseini A, Tran TT, Lavan DA, Langer R (2004) Advances in brief nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Synthesis (Stuttg), pp 7668–7672 Farokhzad OC, Jon S, Khademhosseini A, Tran TT, Lavan DA, Langer R (2004) Advances in brief nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Synthesis (Stuttg), pp 7668–7672
109.
go back to reference Xie X et al (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35PubMedCrossRef Xie X et al (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35PubMedCrossRef
110.
go back to reference Wang J et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077PubMedPubMedCentralCrossRef Wang J et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077PubMedPubMedCentralCrossRef
111.
go back to reference Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52PubMedPubMedCentral Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52PubMedPubMedCentral
113.
go back to reference Sinha N, Member S, Yeow JT (2005) Carbon nanotubes for biomedical applications (carbon nanostructures). IEEE Trans Nanobioscience 4(2):180–195CrossRefPubMed Sinha N, Member S, Yeow JT (2005) Carbon nanotubes for biomedical applications (carbon nanostructures). IEEE Trans Nanobioscience 4(2):180–195CrossRefPubMed
114.
go back to reference Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21(45) Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21(45)
115.
go back to reference Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35PubMedCrossRef Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35PubMedCrossRef
116.
go back to reference Mirau PA, Smith JE, Chávezchávez JL, Hagen JA, Kelley-Loughnane N, Naik R (2018) Structured DNA aptamer interactions with gold nanoparticles. Langmuir 34:18CrossRef Mirau PA, Smith JE, Chávezchávez JL, Hagen JA, Kelley-Loughnane N, Naik R (2018) Structured DNA aptamer interactions with gold nanoparticles. Langmuir 34:18CrossRef
117.
go back to reference Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013 Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013
118.
go back to reference Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070PubMedCrossRef Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070PubMedCrossRef
119.
go back to reference Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249PubMedCrossRef Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249PubMedCrossRef
120.
go back to reference Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer – gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696PubMedCrossRef Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer – gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696PubMedCrossRef
121.
Metadata
Title
Aptamer-Modified Nanoparticles in Medical Applications
Authors
Alina Eilers
Sandra Witt
Johanna Walter
Copyright Year
2020
DOI
https://doi.org/10.1007/10_2020_124

Premium Partners