Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 5/2023

12-03-2022

Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review

Authors: Danil Yu Pimenov, Andres Bustillo, Szymon Wojciechowski, Vishal S. Sharma, Munish K. Gupta, Mustafa Kuntoğlu

Published in: Journal of Intelligent Manufacturing | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The wear of cutting tools, cutting force determination, surface roughness variations and other machining responses are of keen interest to latest researchers. The variations of these machining responses results in change in dimensional accuracy and productivity upto great extent. In addition, an excessive increase in wear leads to catastrophic consequences, exceeding the tool breakage. Therefore, this article discusses the online trend of modern approaches in tool condition monitoring while different machining operations. For this purpose, the effective use of new sensors and artificial intelligence (AI) is considered and followed during this holistic review work. The sensor systems used for monitoring tool wear are dynamometers, accelerometers, acoustic emission sensors, current and power sensors, image sensors, other sensors. These systems allow to solve the problem of automation and modeling of technological parameters of the main types of cutting, such as turning, milling, drilling and grinding. The modern artificial intelligence methods are considered, such as: Neural networks, Image recognition, Fuzzy logic, Adaptive neuro-fuzzy inference systems, Bayesian Networks, Support vector machine, Ensembles, Decision and regression trees, k-nearest neighbors, Artificial Neural Network, Markov model, Singular Spectrum Analysis, Genetic algorithms. Discussions also includes the main advantages, disadvantages and prospects of using various AI methods for tool wear monitoring. Moreover, the problems and future directions of the main processing methods using AI models are also highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43, 707–720.CrossRef Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43, 707–720.CrossRef
go back to reference Ahmad, M. I., Yusof, Y., Daud, M. E., Latiff, K., Abdul Kadir, A. Z., & Saif, Y. (2020). Machine monitoring system: a decade in review. The International Journal of Advanced Manufacturing Technology, 108, 3645–3659.CrossRef Ahmad, M. I., Yusof, Y., Daud, M. E., Latiff, K., Abdul Kadir, A. Z., & Saif, Y. (2020). Machine monitoring system: a decade in review. The International Journal of Advanced Manufacturing Technology, 108, 3645–3659.CrossRef
go back to reference Ahmed, Y. S., Alam, M. S., Arif, A. F. M., & Veldhuis, S. C. (2019). Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. International Journal of Advanced Manufacturing Technology, 103, 2257–2276.CrossRef Ahmed, Y. S., Alam, M. S., Arif, A. F. M., & Veldhuis, S. C. (2019). Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. International Journal of Advanced Manufacturing Technology, 103, 2257–2276.CrossRef
go back to reference Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). An optimization method for defects reduction in fiber laser keyhole welding. Applied Physics A, 122, 31.CrossRef Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). An optimization method for defects reduction in fiber laser keyhole welding. Applied Physics A, 122, 31.CrossRef
go back to reference Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y., & Yue, C. (2015). Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Applied Physics A, 121, 555–569.CrossRef Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y., & Yue, C. (2015). Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Applied Physics A, 121, 555–569.CrossRef
go back to reference Akkoyun, F., Ercetin, A., Aslantas, K., Pimenov, D. Y., Giasin, K., Lakshmikanthan, A., et al. (2021). Measurement of micro burr and slot widths through image processing: comparison of manual and automated measurements in micro-milling. Sensors, 21, 4432.CrossRef Akkoyun, F., Ercetin, A., Aslantas, K., Pimenov, D. Y., Giasin, K., Lakshmikanthan, A., et al. (2021). Measurement of micro burr and slot widths through image processing: comparison of manual and automated measurements in micro-milling. Sensors, 21, 4432.CrossRef
go back to reference Alegre, E., Alaiz-Rodríguez, R., Barreiro, J., & Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 15, 3.CrossRef Alegre, E., Alaiz-Rodríguez, R., Barreiro, J., & Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 15, 3.CrossRef
go back to reference Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.CrossRef Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.CrossRef
go back to reference Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.CrossRef Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.CrossRef
go back to reference Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2(5), 1–11.CrossRef Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2(5), 1–11.CrossRef
go back to reference Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today Proceedings, 2, 3419–3428.CrossRef Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today Proceedings, 2, 3419–3428.CrossRef
go back to reference An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement, 154, 107461.CrossRef An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement, 154, 107461.CrossRef
go back to reference Arriandiaga, A., Portillo, E., Sánchez, J. A., Cabanes, I., & Pombo, I. (2014). Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process. Sensors, 14, 8756–8778.CrossRef Arriandiaga, A., Portillo, E., Sánchez, J. A., Cabanes, I., & Pombo, I. (2014). Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process. Sensors, 14, 8756–8778.CrossRef
go back to reference Axinte, D., & Gindy, N. (2004). Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. International Journal of Production Research, 42, 2679–2691.CrossRef Axinte, D., & Gindy, N. (2004). Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. International Journal of Production Research, 42, 2679–2691.CrossRef
go back to reference Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.CrossRef Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.CrossRef
go back to reference Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf, 18, 343–354.CrossRef Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf, 18, 343–354.CrossRef
go back to reference Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research, 46, 1187–1201.CrossRef Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research, 46, 1187–1201.CrossRef
go back to reference Bhuiyan, M. S. H., & Choudhury, I. A. (2014). Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing, 13, 539–569.CrossRef Bhuiyan, M. S. H., & Choudhury, I. A. (2014). Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing, 13, 539–569.CrossRef
go back to reference Binsaeid, S., Asfour, S., Cho, S., & Onar, A. (2009). Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. Journal of Materials Processing Technology, 209, 4728–4738.CrossRef Binsaeid, S., Asfour, S., Cho, S., & Onar, A. (2009). Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. Journal of Materials Processing Technology, 209, 4728–4738.CrossRef
go back to reference Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. Journal of Intelligent Manufacturing, 32, 127–140.CrossRef Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. Journal of Intelligent Manufacturing, 32, 127–140.CrossRef
go back to reference Bustillo, A., Díez-Pastor, J.-F., Quintana, G., & García-Osorio, C. (2011). Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 57, 521.CrossRef Bustillo, A., Díez-Pastor, J.-F., Quintana, G., & García-Osorio, C. (2011). Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 57, 521.CrossRef
go back to reference Bustillo, A., Pimenov, D. Y., Matuszewski, M., & Mikolajczyk, T. (2018). Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot Comput Integr Manuf, 53, 215–227.CrossRef Bustillo, A., Pimenov, D. Y., Matuszewski, M., & Mikolajczyk, T. (2018). Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot Comput Integr Manuf, 53, 215–227.CrossRef
go back to reference Bustillo, A., Pimenov, D. Y., Mia, M., & Kapłonek, W. (2021). Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 32, 895–912.CrossRef Bustillo, A., Pimenov, D. Y., Mia, M., & Kapłonek, W. (2021). Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 32, 895–912.CrossRef
go back to reference Bustillo, A., Reis, R., Machado, A. R., & Pimenov, D. Y. (2020). Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2020, 1–19. Bustillo, A., Reis, R., Machado, A. R., & Pimenov, D. Y. (2020). Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2020, 1–19.
go back to reference Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals, 44, 541–567.CrossRef Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals, 44, 541–567.CrossRef
go back to reference Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18, 823.CrossRef Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18, 823.CrossRef
go back to reference Cai, W., Zhang, W., Hu, X., & Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.CrossRef Cai, W., Zhang, W., Hu, X., & Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.CrossRef
go back to reference Chen, N., Hao, B., Guo, Y., Li, L., Khan, M. A., & He, N. (2020). Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. The International Journal of Advanced Manufacturing Technology, 108, 2091–2101.CrossRef Chen, N., Hao, B., Guo, Y., Li, L., Khan, M. A., & He, N. (2020). Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. The International Journal of Advanced Manufacturing Technology, 108, 2091–2101.CrossRef
go back to reference Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. International Journal of Advanced Manufacturing Technology, 99, 1917–1926.CrossRef Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. International Journal of Advanced Manufacturing Technology, 99, 1917–1926.CrossRef
go back to reference Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., et al. (2022). Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems, 62, 286–300.CrossRef Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., et al. (2022). Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems, 62, 286–300.CrossRef
go back to reference Choudhury, S. K., Jain, V. K., & Rao, C. V. V. R. (1999). On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools and Manufacture, 39, 489–504.CrossRef Choudhury, S. K., Jain, V. K., & Rao, C. V. V. R. (1999). On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools and Manufacture, 39, 489–504.CrossRef
go back to reference Chryssolouris, G., & Domroese, M. (1989). An experimental study of strategies for integrating sensor information in machining. CIRP Annals, 38, 425–428.CrossRef Chryssolouris, G., & Domroese, M. (1989). An experimental study of strategies for integrating sensor information in machining. CIRP Annals, 38, 425–428.CrossRef
go back to reference Corne, R., Nath, C., El Mansori, M., & Kurfess, T. (2017). Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. Journal of Manufacturing Systems, 43, 287–295.CrossRef Corne, R., Nath, C., El Mansori, M., & Kurfess, T. (2017). Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. Journal of Manufacturing Systems, 43, 287–295.CrossRef
go back to reference D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.CrossRef D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.CrossRef
go back to reference D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia Cirp, 12, 252–257.CrossRef D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia Cirp, 12, 252–257.CrossRef
go back to reference D’Addona, D. M., Ullah, A. M. M. S., & Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28, 1285–1301.CrossRef D’Addona, D. M., Ullah, A. M. M. S., & Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28, 1285–1301.CrossRef
go back to reference da Silva, R. H. L., da Silva, M. B., & Hassui, A. (2016). A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Science and Technology, 20, 386–405.CrossRef da Silva, R. H. L., da Silva, M. B., & Hassui, A. (2016). A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Science and Technology, 20, 386–405.CrossRef
go back to reference Deiab, I., Assaleh, K., & Hammad, F. (2009). On modeling of tool wear using sensor fusion and polynomial classifiers. Mechanical Systems and Signal Processing, 23, 1719–1729.CrossRef Deiab, I., Assaleh, K., & Hammad, F. (2009). On modeling of tool wear using sensor fusion and polynomial classifiers. Mechanical Systems and Signal Processing, 23, 1719–1729.CrossRef
go back to reference Dornfeld, D. A., & DeVries, M. F. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals, 39, 101–105.CrossRef Dornfeld, D. A., & DeVries, M. F. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals, 39, 101–105.CrossRef
go back to reference Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., & Kurfess, T. (2016). Tool life predictions in milling using spindle power with the neural network technique. Journal of Manufacturing Processes, 22, 161–168.CrossRef Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., & Kurfess, T. (2016). Tool life predictions in milling using spindle power with the neural network technique. Journal of Manufacturing Processes, 22, 161–168.CrossRef
go back to reference Dutta, S., Pal, S. K., Mukhopadhyay, S., & Sen, R. (2013). Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6, 212–232.CrossRef Dutta, S., Pal, S. K., Mukhopadhyay, S., & Sen, R. (2013). Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6, 212–232.CrossRef
go back to reference Elangovan, M., Devasenapati, S. B., Sakthivel, N. R., & Ramachandran, K. I. (2011). Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Applications, 38, 4450–4459.CrossRef Elangovan, M., Devasenapati, S. B., Sakthivel, N. R., & Ramachandran, K. I. (2011). Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Applications, 38, 4450–4459.CrossRef
go back to reference Erden, M. A., Yaşar, N., Korkmaz, M. E., Ayvacı, B., Nimel Sworna Ross, K., & Mia, M. (2021). Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. The International Journal of Advanced Manufacturing Technology, 284, 2811–2827. https://doi.org/10.1007/s00170-021-07052-zCrossRef Erden, M. A., Yaşar, N., Korkmaz, M. E., Ayvacı, B., Nimel Sworna Ross, K., & Mia, M. (2021). Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. The International Journal of Advanced Manufacturing Technology, 284, 2811–2827. https://​doi.​org/​10.​1007/​s00170-021-07052-zCrossRef
go back to reference Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signals. Mechatronics, 14, 533–548.CrossRef Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signals. Mechatronics, 14, 533–548.CrossRef
go back to reference Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45, 1375–1385.CrossRef Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45, 1375–1385.CrossRef
go back to reference Ferreira, F. I., de Aguiar, P. R., Lopes, W. N., Martins, C. H. R., de Souza, R. R., Bianchi, E. C., et al. (2019). Inferential measurement of the dresser width for the grinding process automation. International Journal of Advanced Manufacturing Technology, 100, 3055–3066.CrossRef Ferreira, F. I., de Aguiar, P. R., Lopes, W. N., Martins, C. H. R., de Souza, R. R., Bianchi, E. C., et al. (2019). Inferential measurement of the dresser width for the grinding process automation. International Journal of Advanced Manufacturing Technology, 100, 3055–3066.CrossRef
go back to reference Fong, K. M., Wang, X., Kamaruddin, S., & Ismadi, M.-Z. (2021). Investigation on universal tool wear measurement technique using image-based cross-correlation analysis. Measurement, 169, 108489.CrossRef Fong, K. M., Wang, X., Kamaruddin, S., & Ismadi, M.-Z. (2021). Investigation on universal tool wear measurement technique using image-based cross-correlation analysis. Measurement, 169, 108489.CrossRef
go back to reference Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25, 473–487.CrossRef Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25, 473–487.CrossRef
go back to reference García-Ordás, M. T., Alegre, E., González-Castro, V., & Alaiz-Rodríguez, R. (2017). A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. International Journal of Advanced Manufacturing Technology, 90, 1947–1961.CrossRef García-Ordás, M. T., Alegre, E., González-Castro, V., & Alaiz-Rodríguez, R. (2017). A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. International Journal of Advanced Manufacturing Technology, 90, 1947–1961.CrossRef
go back to reference García-Ordás, M. T., Alegre-Gutiérrez, E., Alaiz-Rodríguez, R., & González-Castro, V. (2018). Tool wear monitoring using an online, automatic and low cost system based on local texture. Mechanical Systems and Signal Processing, 112, 98–112.CrossRef García-Ordás, M. T., Alegre-Gutiérrez, E., Alaiz-Rodríguez, R., & González-Castro, V. (2018). Tool wear monitoring using an online, automatic and low cost system based on local texture. Mechanical Systems and Signal Processing, 112, 98–112.CrossRef
go back to reference Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., et al. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21, 466–479.CrossRef Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., et al. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21, 466–479.CrossRef
go back to reference Griffin, J. M. (2018). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing, 29, 1171–1189.CrossRef Griffin, J. M. (2018). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing, 29, 1171–1189.CrossRef
go back to reference Gupta, M. K., Mia, M., Pruncu, C. I., Khan, A. M., Rahman, M. A., Jamil, M., et al. (2020). Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 207. https://doi.org/10.1007/s40430-020-2256-zCrossRef Gupta, M. K., Mia, M., Pruncu, C. I., Khan, A. M., Rahman, M. A., Jamil, M., et al. (2020). Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 207. https://​doi.​org/​10.​1007/​s40430-020-2256-zCrossRef
go back to reference Guzeev, V. I., & Pimenov, D. Y. (2011). Cutting force in face milling with tool wear. Russian Engineering Research, 31, 989.CrossRef Guzeev, V. I., & Pimenov, D. Y. (2011). Cutting force in face milling with tool wear. Russian Engineering Research, 31, 989.CrossRef
go back to reference Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRef Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRef
go back to reference Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31, 953–966.CrossRef Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31, 953–966.CrossRef
go back to reference Hui, Y., Mei, X., Jiang, G., Tao, T., Pei, C., & Ma, Z. (2019). milling tool wear state recognition by vibration signal using a stacked generalization ensemble model. Shock and Vibration, 2019, 1–16.CrossRef Hui, Y., Mei, X., Jiang, G., Tao, T., Pei, C., & Ma, Z. (2019). milling tool wear state recognition by vibration signal using a stacked generalization ensemble model. Shock and Vibration, 2019, 1–16.CrossRef
go back to reference Jackson, M. J., Robinson, G. M., Hyde, L. J., & Rhodes, R. (2006). Neural image processing of the wear of cutting tools coated with thin films. Journal of Materials Engineering and Performance, 15, 223–229.CrossRef Jackson, M. J., Robinson, G. M., Hyde, L. J., & Rhodes, R. (2006). Neural image processing of the wear of cutting tools coated with thin films. Journal of Materials Engineering and Performance, 15, 223–229.CrossRef
go back to reference Jain, A. K., & Lad, B. K. (2019). A novel integrated tool condition monitoring system. Journal of Intelligent Manufacturing, 30, 1423–1436.CrossRef Jain, A. K., & Lad, B. K. (2019). A novel integrated tool condition monitoring system. Journal of Intelligent Manufacturing, 30, 1423–1436.CrossRef
go back to reference Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.CrossRef Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.CrossRef
go back to reference Javed, K., Gouriveau, R., Li, X., & Zerhouni, N. (2018). Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. Journal of Intelligent Manufacturing, 29, 1873–1890.CrossRef Javed, K., Gouriveau, R., Li, X., & Zerhouni, N. (2018). Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. Journal of Intelligent Manufacturing, 29, 1873–1890.CrossRef
go back to reference Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9, 447–455.CrossRef Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9, 447–455.CrossRef
go back to reference Junior, P., D’Addona, D. M., Aguiar, P., & Teti, R. (2018). Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and k-nearest neighbor classifier approach. Sensors, 18, 4453.CrossRef Junior, P., D’Addona, D. M., Aguiar, P., & Teti, R. (2018). Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and k-nearest neighbor classifier approach. Sensors, 18, 4453.CrossRef
go back to reference Kamarthi, S. V., & Pittner, S. (1997). Fourier and wavelet transform for flank wear estimation—a comparison. Mechanical Systems and Signal Processing, 11, 791–809.CrossRef Kamarthi, S. V., & Pittner, S. (1997). Fourier and wavelet transform for flank wear estimation—a comparison. Mechanical Systems and Signal Processing, 11, 791–809.CrossRef
go back to reference Karandikar, J. M., Schmitz, T. L., & Abbas, A. E. (2012). Spindle speed selection for tool life testing using Bayesian inference. Journal of Manufacturing Systems, 31, 403–411.CrossRef Karandikar, J. M., Schmitz, T. L., & Abbas, A. E. (2012). Spindle speed selection for tool life testing using Bayesian inference. Journal of Manufacturing Systems, 31, 403–411.CrossRef
go back to reference Kassim, A. A., Mian, Z., & Mannan, M. A. (2004). Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit, 37, 1925–1933.CrossRef Kassim, A. A., Mian, Z., & Mannan, M. A. (2004). Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit, 37, 1925–1933.CrossRef
go back to reference Kassim, A. A., Mian, Z., & Mannan, M. A. (2006). Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Machine Vision and Applications, 17, 327–336.CrossRef Kassim, A. A., Mian, Z., & Mannan, M. A. (2006). Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Machine Vision and Applications, 17, 327–336.CrossRef
go back to reference Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf, 226, 1808–1818.CrossRef Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf, 226, 1808–1818.CrossRef
go back to reference Kilundu, B., & Dehombreux, P. (2008). Singular spectrum analysis and Machine Learning techniques for tool wear monitoring. Mecanique and Industries, 9, 1–8.CrossRef Kilundu, B., & Dehombreux, P. (2008). Singular spectrum analysis and Machine Learning techniques for tool wear monitoring. Mecanique and Industries, 9, 1–8.CrossRef
go back to reference Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 555–568.CrossRef Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 555–568.CrossRef
go back to reference Korkmaz, M. E., & Günay, M. U. S. T. A. F. A. (2018). Experimental and statistical analysis on machinability of nimonic80A superalloy with pvd coated carbide. Sigma Journal of Engineering and Natural Sciences, 36, 1141–1152. Korkmaz, M. E., & Günay, M. U. S. T. A. F. A. (2018). Experimental and statistical analysis on machinability of nimonic80A superalloy with pvd coated carbide. Sigma Journal of Engineering and Natural Sciences, 36, 1141–1152.
go back to reference Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. International Journal of Advanced Manufacturing Technology, 95, 3797–3808.CrossRef Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. International Journal of Advanced Manufacturing Technology, 95, 3797–3808.CrossRef
go back to reference Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2014). Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 28, 4247–4256.CrossRef Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2014). Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 28, 4247–4256.CrossRef
go back to reference Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I. (2018). Acoustic emission-based tool condition classification in a precision high-speed machining of titanium alloy: A machine learning approach. International Journal of Computational Intelligence and Applications, 17, 1850017.CrossRef Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I. (2018). Acoustic emission-based tool condition classification in a precision high-speed machining of titanium alloy: A machine learning approach. International Journal of Computational Intelligence and Applications, 17, 1850017.CrossRef
go back to reference Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons. Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.
go back to reference Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., et al. (2021a). A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors, 21, 108.CrossRef Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., et al. (2021a). A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors, 21, 108.CrossRef
go back to reference Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20, 4377.CrossRef Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20, 4377.CrossRef
go back to reference Kuntoğlu, M., & Sağlam, H. (2021c). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.CrossRef Kuntoğlu, M., & Sağlam, H. (2021c). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.CrossRef
go back to reference Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Y. (2021d). A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. The International Journal of Advanced Manufacturing Technology, 116, 2711–2735.CrossRef Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Y. (2021d). A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. The International Journal of Advanced Manufacturing Technology, 116, 2711–2735.CrossRef
go back to reference Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Networks, 12, 355–370.CrossRef Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Networks, 12, 355–370.CrossRef
go back to reference Kuram, E., & Ozcelik, B. (2016). Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. Journal of Intelligent Manufacturing, 27, 817–830.CrossRef Kuram, E., & Ozcelik, B. (2016). Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. Journal of Intelligent Manufacturing, 27, 817–830.CrossRef
go back to reference Lee, K.-M., Huang, Y., Ji, J., & Lin, C.-Y. (2018). An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting. IEEE Transactions on Automation Science and Engineering, 15, 1665–1676.CrossRef Lee, K.-M., Huang, Y., Ji, J., & Lin, C.-Y. (2018). An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting. IEEE Transactions on Automation Science and Engineering, 15, 1665–1676.CrossRef
go back to reference Letot, C., Serra, R., Dossevi, M., & Dehombreux, P. (2016). Cutting tools reliability and residual life prediction from degradation indicators in turning process. International Journal of Advanced Manufacturing Technology, 86, 495–506.CrossRef Letot, C., Serra, R., Dossevi, M., & Dehombreux, P. (2016). Cutting tools reliability and residual life prediction from degradation indicators in turning process. International Journal of Advanced Manufacturing Technology, 86, 495–506.CrossRef
go back to reference Li, C. J., & Tzeng, T. C. (2000). Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mechanical Systems and Signal Processing, 14, 945–957.CrossRef Li, C. J., & Tzeng, T. C. (2000). Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mechanical Systems and Signal Processing, 14, 945–957.CrossRef
go back to reference Li, H., Wang, W., Li, Z., Dong, L., & Li, Q. (2020). A novel approach for predicting tool remaining useful life using limited data. Mechanical Systems and Signal Processing, 143, 106832.CrossRef Li, H., Wang, W., Li, Z., Dong, L., & Li, Q. (2020). A novel approach for predicting tool remaining useful life using limited data. Mechanical Systems and Signal Processing, 143, 106832.CrossRef
go back to reference Li, S., & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, 118, 665–672. Li, S., & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, 118, 665–672.
go back to reference Li, X. (2002). A brief review: Acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42, 157–165.CrossRef Li, X. (2002). A brief review: Acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42, 157–165.CrossRef
go back to reference Li, X. Q., Wong, Y. S., & Nee, A. Y. C. (1999). Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213, 191–196.CrossRef Li, X. Q., Wong, Y. S., & Nee, A. Y. C. (1999). Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213, 191–196.CrossRef
go back to reference Liao, X., Zhou, G., Zhang, Z., Lu, J., & Ma, J. (2019). Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. International Journal of Advanced Manufacturing Technology, 104, 1051–1063.CrossRef Liao, X., Zhou, G., Zhang, Z., Lu, J., & Ma, J. (2019). Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. International Journal of Advanced Manufacturing Technology, 104, 1051–1063.CrossRef
go back to reference Liu, C., Li, Y., Zhou, G., & Shen, W. (2018). A sensor fusion and support vector machine based approach for recognition of complex machining conditions. Journal of Intelligent Manufacturing, 29, 1739–1752.CrossRef Liu, C., Li, Y., Zhou, G., & Shen, W. (2018). A sensor fusion and support vector machine based approach for recognition of complex machining conditions. Journal of Intelligent Manufacturing, 29, 1739–1752.CrossRef
go back to reference Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26, 230–239.CrossRef Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26, 230–239.CrossRef
go back to reference Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. International Journal of Advanced Manufacturing Technology, 104, 3647–3662.CrossRef Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. International Journal of Advanced Manufacturing Technology, 104, 3647–3662.CrossRef
go back to reference Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2015). Research on emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Tehnički vjesnik, 22(5), 1213–1218. Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2015). Research on emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Tehnički vjesnik, 22(5), 1213–1218.
go back to reference Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017b). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26, 431–438. https://doi.org/10.1007/s11665-016-2450-4CrossRef Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017b). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26, 431–438. https://​doi.​org/​10.​1007/​s11665-016-2450-4CrossRef
go back to reference Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Zak, K., Habrat, W., & Nieslony, P. (2018). Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology, 32, 1585–1591. https://doi.org/10.1007/s12206-018-0313-7CrossRef Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Zak, K., Habrat, W., & Nieslony, P. (2018). Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology, 32, 1585–1591. https://​doi.​org/​10.​1007/​s12206-018-0313-7CrossRef
go back to reference Masoudi, S., Sima, M., & Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13, 211–225. Masoudi, S., Sima, M., & Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13, 211–225.
go back to reference McParland, D., Baron, S., O’Rourke, S., Dowling, D., Ahearne, E., & Parnell, A. (2019). Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 30, 1259–1270. https://doi.org/10.1007/s10845-017-1317-3CrossRef McParland, D., Baron, S., O’Rourke, S., Dowling, D., Ahearne, E., & Parnell, A. (2019). Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 30, 1259–1270. https://​doi.​org/​10.​1007/​s10845-017-1317-3CrossRef
go back to reference Mia, M., Khan, M. A., & Dhar, N. R. (2017). Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90, 1433–1445.CrossRef Mia, M., Khan, M. A., & Dhar, N. R. (2017). Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90, 1433–1445.CrossRef
go back to reference Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, D. Y. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503–513.CrossRef Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, D. Y. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503–513.CrossRef
go back to reference Mikołajczyk, T., Nowicki, K., Kłodowski, A., & Pimenov, D. Y. (2017). Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing, 88, 100–110.CrossRef Mikołajczyk, T., Nowicki, K., Kłodowski, A., & Pimenov, D. Y. (2017). Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing, 88, 100–110.CrossRef
go back to reference Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N. R., & Pramanik, A. (2020). Tool condition monitoring techniques in milling process—A review. Journal of Materials Research and Technology, 9, 1032–1042.CrossRef Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N. R., & Pramanik, A. (2020). Tool condition monitoring techniques in milling process—A review. Journal of Materials Research and Technology, 9, 1032–1042.CrossRef
go back to reference Monostori, L., & Prohaszka, J. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488.CrossRef Monostori, L., & Prohaszka, J. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488.CrossRef
go back to reference Nakai, M. E., Aguiar, P. R., Guillardi, H., Jr., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42, 7026–7035.CrossRef Nakai, M. E., Aguiar, P. R., Guillardi, H., Jr., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42, 7026–7035.CrossRef
go back to reference Ngo, T. (2011). Data mining: practical machine learning tools and technique, by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes, 36(5), 51–52.CrossRef Ngo, T. (2011). Data mining: practical machine learning tools and technique, by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes, 36(5), 51–52.CrossRef
go back to reference Niaki, F. A., Feng, L., Ulutan, D., & Mears, L. (2016a). A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials. International Journal of Mechatronics and Manufacturing Systems, 9, 97–121.CrossRef Niaki, F. A., Feng, L., Ulutan, D., & Mears, L. (2016a). A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials. International Journal of Mechatronics and Manufacturing Systems, 9, 97–121.CrossRef
go back to reference Niaki, F. A., Ulutan, D., & Mears, L. (2016b). Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing Science and Engineering, 138, 061014.CrossRef Niaki, F. A., Ulutan, D., & Mears, L. (2016b). Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing Science and Engineering, 138, 061014.CrossRef
go back to reference Olufayo, O., & Abou-El-Hossein, K. (2015). Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. International Journal of Advanced Manufacturing Technology, 81, 39–51.CrossRef Olufayo, O., & Abou-El-Hossein, K. (2015). Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. International Journal of Advanced Manufacturing Technology, 81, 39–51.CrossRef
go back to reference Ong, P., Lee, W. K., & Lau, R. J. H. (2019). Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. International Journal of Advanced Manufacturing Technology, 104, 1369–1379.CrossRef Ong, P., Lee, W. K., & Lau, R. J. H. (2019). Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. International Journal of Advanced Manufacturing Technology, 104, 1369–1379.CrossRef
go back to reference Oztemel, E., & Gursev, S. (2020). Literature review of Industry 40 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.CrossRef Oztemel, E., & Gursev, S. (2020). Literature review of Industry 40 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.CrossRef
go back to reference Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36, 2–17.CrossRef Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36, 2–17.CrossRef
go back to reference Pan, T., Zhang, J., Yang, L., Zhao, W., Zhang, H., & Lu, B. (2021). Tool breakage monitoring based on the feature fusion of spindle acceleration signal. International Journal of Advanced Manufacturing Technology, 117, 2973–2986.CrossRef Pan, T., Zhang, J., Yang, L., Zhao, W., Zhang, H., & Lu, B. (2021). Tool breakage monitoring based on the feature fusion of spindle acceleration signal. International Journal of Advanced Manufacturing Technology, 117, 2973–2986.CrossRef
go back to reference Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.CrossRef Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.CrossRef
go back to reference Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57, 114–135.CrossRef Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57, 114–135.CrossRef
go back to reference Patra, K., Pal, S. K., & Bhattacharyya, K. (2007). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7, 929–935.CrossRef Patra, K., Pal, S. K., & Bhattacharyya, K. (2007). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7, 929–935.CrossRef
go back to reference Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29, 1045–1061.CrossRef Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29, 1045–1061.CrossRef
go back to reference Quan, Y., Zhou, M., & Luo, Z. (1998). On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence, 11, 717–722.CrossRef Quan, Y., Zhou, M., & Luo, Z. (1998). On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence, 11, 717–722.CrossRef
go back to reference Rao, C. H. S., Rao, D. N., & Rao, R. N. S. (2006). Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 2069–2076.CrossRef Rao, C. H. S., Rao, D. N., & Rao, R. N. S. (2006). Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 2069–2076.CrossRef
go back to reference Rao, K. V., & Murthy, P. (2018). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM. ANN and SVM. J Intell Manuf, 29, 1533–1543.CrossRef Rao, K. V., & Murthy, P. (2018). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM. ANN and SVM. J Intell Manuf, 29, 1533–1543.CrossRef
go back to reference Rao, K. V., Vidhu, K. P., Kumar, T. A., Rao, N. N., Murthy, P., & Balaji, M. (2016). An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. International Journal of Advanced Manufacturing Technology, 83, 919–927.CrossRef Rao, K. V., Vidhu, K. P., Kumar, T. A., Rao, N. N., Murthy, P., & Balaji, M. (2016). An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. International Journal of Advanced Manufacturing Technology, 83, 919–927.CrossRef
go back to reference Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef
go back to reference Ren, Q., Balazinski, M., & Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. International Journal of Advanced Manufacturing Technology, 63, 1057–1063.CrossRef Ren, Q., Balazinski, M., & Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. International Journal of Advanced Manufacturing Technology, 63, 1057–1063.CrossRef
go back to reference Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.CrossRef Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.CrossRef
go back to reference Ren, Q., Baron, L., Balazinski, M., Botez, R., & Bigras, P. (2015). Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Applied Soft Computing, 31, 14–24.CrossRef Ren, Q., Baron, L., Balazinski, M., Botez, R., & Bigras, P. (2015). Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Applied Soft Computing, 31, 14–24.CrossRef
go back to reference Rivero, A. D., de Lacalle, L. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18, 627–633.CrossRef Rivero, A. D., de Lacalle, L. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18, 627–633.CrossRef
go back to reference Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32, 21–36.CrossRef Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32, 21–36.CrossRef
go back to reference Sadílek, M., Kratochvíl, J., Petrů, J., Čep, R., Zlámal, T., & Stančeková, D. (2014). Cutting tool wear monitoring with the use of impedance layers. Sadílek, M., Kratochvíl, J., Petrů, J., Čep, R., Zlámal, T., & Stančeková, D. (2014). Cutting tool wear monitoring with the use of impedance layers.
go back to reference Sahali, M. A., Belaidi, I., & Serra, R. (2015). Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. International Journal of Advanced Manufacturing Technology, 77, 677–688.CrossRef Sahali, M. A., Belaidi, I., & Serra, R. (2015). Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. International Journal of Advanced Manufacturing Technology, 77, 677–688.CrossRef
go back to reference Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 5069–5085.CrossRef Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 5069–5085.CrossRef
go back to reference Saikumar, S., & Shunmugam, M. S. (2012). Investigations into high-speed rough and finish end-milling of hardened EN24 steel for implementation of control strategies. International Journal of Advanced Manufacturing Technology, 63, 391–406.CrossRef Saikumar, S., & Shunmugam, M. S. (2012). Investigations into high-speed rough and finish end-milling of hardened EN24 steel for implementation of control strategies. International Journal of Advanced Manufacturing Technology, 63, 391–406.CrossRef
go back to reference Santos, M. C., Machado, A. R., Barrozo, M. A. S., Jackson, M. J., & Ezugwu, E. O. (2015). Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075–T6 grades) using genetic algorithm. International Journal of Advanced Manufacturing Technology, 76, 1123–1138.CrossRef Santos, M. C., Machado, A. R., Barrozo, M. A. S., Jackson, M. J., & Ezugwu, E. O. (2015). Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075–T6 grades) using genetic algorithm. International Journal of Advanced Manufacturing Technology, 76, 1123–1138.CrossRef
go back to reference Santos, P., Maudes, J., & Bustillo, A. (2018). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 29, 333–351.CrossRef Santos, P., Maudes, J., & Bustillo, A. (2018). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 29, 333–351.CrossRef
go back to reference Sen, B., Mia, M., Mandal, U. K., & Mondal, S. P. (2019). GEP-and ANN-based tool wear monitoring: A virtually sensing predictive platform for MQL-assisted milling of Inconel 690. International Journal of Advanced Manufacturing Technology, 105, 395–410.CrossRef Sen, B., Mia, M., Mandal, U. K., & Mondal, S. P. (2019). GEP-and ANN-based tool wear monitoring: A virtually sensing predictive platform for MQL-assisted milling of Inconel 690. International Journal of Advanced Manufacturing Technology, 105, 395–410.CrossRef
go back to reference Serin, G., Sener, B., Ozbayoglu, A. M., & Unver, H. O. (2020). Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology, 109, 953–974.CrossRef Serin, G., Sener, B., Ozbayoglu, A. M., & Unver, H. O. (2020). Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology, 109, 953–974.CrossRef
go back to reference Shankar, S., Mohanraj, T., & Rajasekar, R. (2019). Prediction of cutting tool wear during milling process using artificial intelligence techniques. International Journal of Computer Integrated Manufacturing, 32, 174–182.CrossRef Shankar, S., Mohanraj, T., & Rajasekar, R. (2019). Prediction of cutting tool wear during milling process using artificial intelligence techniques. International Journal of Computer Integrated Manufacturing, 32, 174–182.CrossRef
go back to reference Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., et al. (2020). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32, 1–14. Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., et al. (2020). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32, 1–14.
go back to reference Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16, 487–546.CrossRef Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16, 487–546.CrossRef
go back to reference Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65, 371–393.CrossRef Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65, 371–393.CrossRef
go back to reference Sortino, M. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture, 43, 493–497.CrossRef Sortino, M. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture, 43, 493–497.CrossRef
go back to reference Sun, H., Cao, D., Zhao, Z., & Kang, X. (2018). A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE Transactions on Reliability, 67, 1294–1303.CrossRef Sun, H., Cao, D., Zhao, Z., & Kang, X. (2018). A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE Transactions on Reliability, 67, 1294–1303.CrossRef
go back to reference Sun, H., Zhang, J., Mo, R., & Zhang, X. (2020). In-process tool condition forecasting based on a deep learning method. Robotics and Computer-Integrated Manufacturing, 64, 101924.CrossRef Sun, H., Zhang, J., Mo, R., & Zhang, X. (2020). In-process tool condition forecasting based on a deep learning method. Robotics and Computer-Integrated Manufacturing, 64, 101924.CrossRef
go back to reference Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., et al. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813.CrossRef Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., et al. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813.CrossRef
go back to reference Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59, 717–739.CrossRef Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59, 717–739.CrossRef
go back to reference Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4–16.CrossRef Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4–16.CrossRef
go back to reference Twardowski, P., & Wiciak-Pikuła, M. (2019). Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12, 3091.CrossRef Twardowski, P., & Wiciak-Pikuła, M. (2019). Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12, 3091.CrossRef
go back to reference Vasanth, X. A., Paul, P. S., & Varadarajan, A. S. (2020). A neural network model to predict surface roughness during turning of hardened SS410 steel. International Journal of Systems Assurance Engineering and Management, 11, 704–715.CrossRef Vasanth, X. A., Paul, P. S., & Varadarajan, A. S. (2020). A neural network model to predict surface roughness during turning of hardened SS410 steel. International Journal of Systems Assurance Engineering and Management, 11, 704–715.CrossRef
go back to reference Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.CrossRef Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.CrossRef
go back to reference Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.CrossRef Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.CrossRef
go back to reference Wang, G., Yang, Y., & Li, Z. (2014a). Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors, 14, 21588–21602.CrossRef Wang, G., Yang, Y., & Li, Z. (2014a). Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors, 14, 21588–21602.CrossRef
go back to reference Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014b). Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensors Actuators A Physical, 209, 24–32.CrossRef Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014b). Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensors Actuators A Physical, 209, 24–32.CrossRef
go back to reference Wang, G., Zhang, Y., Liu, C., Xie, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30, 113–122.CrossRef Wang, G., Zhang, Y., Liu, C., Xie, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30, 113–122.CrossRef
go back to reference Wang, J., Huang, C. Z., & Song, W. G. (2003). The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 142, 338–346.CrossRef Wang, J., Huang, C. Z., & Song, W. G. (2003). The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 142, 338–346.CrossRef
go back to reference Wang, J., Xie, J., Zhao, R., Zhang, L., & Duan, L. (2017). Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 45, 47–58.CrossRef Wang, J., Xie, J., Zhao, R., Zhang, L., & Duan, L. (2017). Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 45, 47–58.CrossRef
go back to reference Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life prediction. Journal of Manufacturing Systems, 37, 528–534.CrossRef Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life prediction. Journal of Manufacturing Systems, 37, 528–534.CrossRef
go back to reference Wilkinson, P., Reuben, R. L., Jones, J. D. C., Barton, J. S., Hand, D. P., Carolan, T. A., et al. (1999). Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mechanical Systems and Signal Processing, 13, 955–966.CrossRef Wilkinson, P., Reuben, R. L., Jones, J. D. C., Barton, J. S., Hand, D. P., Carolan, T. A., et al. (1999). Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mechanical Systems and Signal Processing, 13, 955–966.CrossRef
go back to reference Wojciechowski, S., Maruda, R. W., Nieslony, P., & Krolczyk, G. M. (2016). Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences, 119, 360–369.CrossRef Wojciechowski, S., Maruda, R. W., Nieslony, P., & Krolczyk, G. M. (2016). Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences, 119, 360–369.CrossRef
go back to reference Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors, 19, 3817.CrossRef Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors, 19, 3817.CrossRef
go back to reference Xie, Z., Li, J., & Lu, Y. (2018). An integrated wireless vibration sensing tool holder for milling tool condition monitoring. International Journal of Advanced Manufacturing Technology, 95, 2885–2896.CrossRef Xie, Z., Li, J., & Lu, Y. (2018). An integrated wireless vibration sensing tool holder for milling tool condition monitoring. International Journal of Advanced Manufacturing Technology, 95, 2885–2896.CrossRef
go back to reference Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020a). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32, 77–90.CrossRef Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020a). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32, 77–90.CrossRef
go back to reference Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020b). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.CrossRef Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020b). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.CrossRef
go back to reference Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.CrossRef Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.CrossRef
go back to reference Yang, Z., & Yu, Z. (2012). Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology, 62, 107–121.CrossRef Yang, Z., & Yu, Z. (2012). Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology, 62, 107–121.CrossRef
go back to reference Yen, C.-L., Lu, M.-C., & Chen, J.-L. (2013). Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mechanical Systems and Signal Processing, 34, 353–366.CrossRef Yen, C.-L., Lu, M.-C., & Chen, J.-L. (2013). Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mechanical Systems and Signal Processing, 34, 353–366.CrossRef
go back to reference Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.CrossRef Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.CrossRef
go back to reference Yurtkuran, H., Korkmaz, M. E., & Günay, M. (2016). Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert. Gazi University Journal of Science, 29(4), 987–995. Yurtkuran, H., Korkmaz, M. E., & Günay, M. (2016). Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert. Gazi University Journal of Science, 29(4), 987–995.
go back to reference Zafar, T., Kamal, K., Sheikh, Z., Mathavan, S., Ali, U., & Hashmi, H. (2017). A neural network based approach for background noise reduction in airborne acoustic emission of a machining process. Journal of Mechanical Science and Technology, 31, 3171–3182.CrossRef Zafar, T., Kamal, K., Sheikh, Z., Mathavan, S., Ali, U., & Hashmi, H. (2017). A neural network based approach for background noise reduction in airborne acoustic emission of a machining process. Journal of Mechanical Science and Technology, 31, 3171–3182.CrossRef
go back to reference Zhang, B., & Shin, Y. C. (2018). A multimodal intelligent monitoring system for turning processes. Journal of Manufacturing Processes, 35, 547–558.CrossRef Zhang, B., & Shin, Y. C. (2018). A multimodal intelligent monitoring system for turning processes. Journal of Manufacturing Processes, 35, 547–558.CrossRef
go back to reference Zhang, C., Yao, X., Zhang, J., & Jin, H. (2016). Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors, 16, 795.CrossRef Zhang, C., Yao, X., Zhang, J., & Jin, H. (2016). Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors, 16, 795.CrossRef
go back to reference Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26, 1011–1026.CrossRef Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26, 1011–1026.CrossRef
go back to reference Zhu, K., San Wong, Y., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.CrossRef Zhu, K., San Wong, Y., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.CrossRef
go back to reference Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23, 1805–1815.CrossRef Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23, 1805–1815.CrossRef
Metadata
Title
Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review
Authors
Danil Yu Pimenov
Andres Bustillo
Szymon Wojciechowski
Vishal S. Sharma
Munish K. Gupta
Mustafa Kuntoğlu
Publication date
12-03-2022
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 5/2023
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-022-01923-2

Other articles of this Issue 5/2023

Journal of Intelligent Manufacturing 5/2023 Go to the issue

Premium Partners