Skip to main content
Top
Published in: Journal of Electronic Materials 9/2023

12-07-2023 | Original Research Article

Augmenting CIGS Solar Cell Efficiency Through Multiple Grading Profile Analysis

Authors: Shivani Gohri, Jaya Madan, Rahul Pandey

Published in: Journal of Electronic Materials | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thin film solar cells are leading the charge toward a greener future, offering a renewable energy source that can be scaled up to meet the rising demand for clean energy. Copper-indium-gallium-selenium (CIGS) is a promising material for solar cells due to its excellent absorption coefficient, affordability, and non-toxic nature. As per the literature, CdS is the most commonly used buffer layer for CIGS solar cells, which is toxic. Therefore, in this article, a CIGS-based solar cell is proposed using In2S3 as a buffer layer. The efficiency achieved by this In2S3 -based CIGS solar cell is 17.7%. To further enhance the efficiency, this work utilizes the most exciting property of CIGS—their tuneable bandgap. A bandgap that can be adjusted is known as a tuneable bandgap, which can be achieved by altering the composition of the CIGS material. In this context, the bandgap of CIGS is modified by gradually changing the semiconductor’s composition throughout its thickness. Thus, in this work, linear grading, parabolic grading and beta-grading profiles are used to obtain the optimum composition for the CIGS layer. Grading of CIGS helps to reduce transmission and thermalization losses by optimizing the cell’s ability to absorb a wide range of wavelengths of light and by tailoring the energy bandgap of the material. Another critical factor for obtaining the highest efficiency is the thickness of the absorber layer. Therefore, the thickness of the CIGS layer was also varied along with the grading profiles. The results show that maximum efficiency of 25.2% can be achieved using beta grading. Additionally, the results show that the optimum CIGS layer thickness is 1 µm for CIGS-based solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Kaelin, D. Rudmann, and A. Tiwari, Low cost processing of CIGS thin film solar cells. Sol. Energy 77(6), 749 (2004).CrossRef M. Kaelin, D. Rudmann, and A. Tiwari, Low cost processing of CIGS thin film solar cells. Sol. Energy 77(6), 749 (2004).CrossRef
2.
go back to reference M. Sandhu and T. Thakur, Modified cascaded H-bridge multilevel inverter for hybrid renewable energy applications. IETE J. Res. 68(6), 3971 (2022).CrossRef M. Sandhu and T. Thakur, Modified cascaded H-bridge multilevel inverter for hybrid renewable energy applications. IETE J. Res. 68(6), 3971 (2022).CrossRef
3.
go back to reference M. Sandhu and T. Thakur, Harmonic reduction in a microgrid using modified asymmetrical inverter for hybrid renewable applications, in Proc. 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE) (2022), p. 1 M. Sandhu and T. Thakur, Harmonic reduction in a microgrid using modified asymmetrical inverter for hybrid renewable applications, in Proc. 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE) (2022), p. 1
4.
go back to reference M. Sandhu and T. Thakur, Design and modeling of hybrid MPPT MJSC photovoltaic and wind based microgrid using multilevel inverter, in Proc. 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON) (2016), p. 1 M. Sandhu and T. Thakur, Design and modeling of hybrid MPPT MJSC photovoltaic and wind based microgrid using multilevel inverter, in Proc. 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON) (2016), p. 1
5.
go back to reference S. Gohri, J. Madan, R. Pandey, and R. Sharma, Performance analysis for SnS-and Sn2S3-based back surface field CZTSSe solar cell: a simulation study. J. Electron. Mater. 50(11), 6318 (2021).CrossRef S. Gohri, J. Madan, R. Pandey, and R. Sharma, Performance analysis for SnS-and Sn2S3-based back surface field CZTSSe solar cell: a simulation study. J. Electron. Mater. 50(11), 6318 (2021).CrossRef
6.
go back to reference A. Thakur, D. Singh, and S.K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell. Mater. Today Proc. 71, 195 (2022).CrossRef A. Thakur, D. Singh, and S.K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell. Mater. Today Proc. 71, 195 (2022).CrossRef
7.
go back to reference A. Thakur, D. Singh, and S. K. Gill, Comparative performance analysis and modelling of tin based planar perovskite solar cell, in Proc. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (2022), p. 1 A. Thakur, D. Singh, and S. K. Gill, Comparative performance analysis and modelling of tin based planar perovskite solar cell, in Proc. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (2022), p. 1
8.
go back to reference A. Hosen and S.R. Al Ahmed, Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters. J. Alloys Compd. 909, 164823 (2022).CrossRef A. Hosen and S.R. Al Ahmed, Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters. J. Alloys Compd. 909, 164823 (2022).CrossRef
9.
go back to reference S. Gohri, J. Madan, R. Pandey, and R. Sharma, Assessment of WSe 2 based BSF layer on CZTSSe solar cell using SCAPS-1D, in Proc. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (2021), p. 2020 S. Gohri, J. Madan, R. Pandey, and R. Sharma, Assessment of WSe 2 based BSF layer on CZTSSe solar cell using SCAPS-1D, in Proc. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (2021), p. 2020
10.
go back to reference K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, and T. Meguro, A high efficiency thin film silicon solar cell and module. Sol. Energy 77(6), 939 (2004).CrossRef K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, and T. Meguro, A high efficiency thin film silicon solar cell and module. Sol. Energy 77(6), 939 (2004).CrossRef
11.
go back to reference M.K. Hossain, A. Arnab, R.C. Das, K. Hossain, M. Rubel, M.F. Rahman, H. Bencherif, M. Emetere, M.K. Mohammed, and R. Pandey, Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12(54), 35002 (2022).CrossRef M.K. Hossain, A. Arnab, R.C. Das, K. Hossain, M. Rubel, M.F. Rahman, H. Bencherif, M. Emetere, M.K. Mohammed, and R. Pandey, Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12(54), 35002 (2022).CrossRef
12.
go back to reference M.K. Mohammed, A.K. Al-Mousoi, S.M. Majeed, S. Singh, A. Kumar, R. Pandey, J. Madan, D.S. Ahmed, and D. Dastan, Stable hole-transporting material-free perovskite solar cells with efficiency exceeding 14% via the introduction of a malonic acid additive for a perovskite precursor. Energy Fuels 36(21), 13187 (2022).CrossRef M.K. Mohammed, A.K. Al-Mousoi, S.M. Majeed, S. Singh, A. Kumar, R. Pandey, J. Madan, D.S. Ahmed, and D. Dastan, Stable hole-transporting material-free perovskite solar cells with efficiency exceeding 14% via the introduction of a malonic acid additive for a perovskite precursor. Energy Fuels 36(21), 13187 (2022).CrossRef
13.
go back to reference S.S. Dipta and A. Uddin, Stability issues of perovskite solar cells: a critical review. Energy Technol. 9(11), 2100560 (2021).CrossRef S.S. Dipta and A. Uddin, Stability issues of perovskite solar cells: a critical review. Energy Technol. 9(11), 2100560 (2021).CrossRef
14.
go back to reference S.R.F.S. Panahi, A. Abbasi, V. Ghods, and M. Amirahmadi, Improvement of CIGS solar cell efficiency with graded bandgap absorber layer. J. Mater. Sci. Mater. Electron. 32(2), 2041 (2021).CrossRef S.R.F.S. Panahi, A. Abbasi, V. Ghods, and M. Amirahmadi, Improvement of CIGS solar cell efficiency with graded bandgap absorber layer. J. Mater. Sci. Mater. Electron. 32(2), 2041 (2021).CrossRef
15.
go back to reference A.K. Al-Mousoi, M.K. Mohammed, R. Pandey, J. Madan, D. Dastan, G. Ravi, and P. Sakthivel, Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer. RSC Adv. 12(50), 32365 (2022).CrossRef A.K. Al-Mousoi, M.K. Mohammed, R. Pandey, J. Madan, D. Dastan, G. Ravi, and P. Sakthivel, Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer. RSC Adv. 12(50), 32365 (2022).CrossRef
16.
go back to reference M. Saadat, M. Moradi, and M. Zahedifar, CIGS absorber layer with double grading Ga profile for highly efficient solar cells. Superlattices Microstruct. 92, 303 (2016).CrossRef M. Saadat, M. Moradi, and M. Zahedifar, CIGS absorber layer with double grading Ga profile for highly efficient solar cells. Superlattices Microstruct. 92, 303 (2016).CrossRef
18.
go back to reference F.T. Mabvuer, F.T. Nya, G.M. Dzifack Kenfack, and A. Laref, Lowering cost approach for CIGS-based solar cell through optimizing band gap profile and doping of stacked active layers─SCAPS modeling. ACS Omega 8(4), 3917 (2023).CrossRef F.T. Mabvuer, F.T. Nya, G.M. Dzifack Kenfack, and A. Laref, Lowering cost approach for CIGS-based solar cell through optimizing band gap profile and doping of stacked active layers─SCAPS modeling. ACS Omega 8(4), 3917 (2023).CrossRef
19.
go back to reference A. Maoucha, H. Ferhati, F. Djeffal, and F. AbdelMalek, Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy. J. Comput. Electron. 22(3), 887 (2023).CrossRef A. Maoucha, H. Ferhati, F. Djeffal, and F. AbdelMalek, Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy. J. Comput. Electron. 22(3), 887 (2023).CrossRef
20.
go back to reference N. Mufti, T. Amrillah, A. Taufiq, M. Diantoro, and H. Nur, Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 207, 1146 (2020).CrossRef N. Mufti, T. Amrillah, A. Taufiq, M. Diantoro, and H. Nur, Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 207, 1146 (2020).CrossRef
21.
go back to reference T.Y. Lin and C.H. Lai, Ga-grading CIGS solar cell by one-step sputtering from a quaternary target without post-selenization, in Proc. 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC) (2015), p. 1 T.Y. Lin and C.H. Lai, Ga-grading CIGS solar cell by one-step sputtering from a quaternary target without post-selenization, in Proc. 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC) (2015), p. 1
22.
go back to reference A. Parisi, R. Pernice, V. Rocca, L. Curcio, S. Stivala, A. C. Cino, G. Cipriani, V. Di Dio, G. Ricco Galluzzo, and R. Miceli, Graded carrier concentration absorber profile for high efficiency CIGS solar cells. Int. J. Photoenergy 2015 (2015) A. Parisi, R. Pernice, V. Rocca, L. Curcio, S. Stivala, A. C. Cino, G. Cipriani, V. Di Dio, G. Ricco Galluzzo, and R. Miceli, Graded carrier concentration absorber profile for high efficiency CIGS solar cells. Int. J. Photoenergy 2015 (2015)
23.
go back to reference S. Royanian, A. Abdolahzadeh Ziabari, and R. Yousefi, Efficiency enhancement of ultra-thin CIGS solar cells using bandgap grading and embedding Au plasmonic nanoparticles. Plasmonics 15(4), 1173 (2020).CrossRef S. Royanian, A. Abdolahzadeh Ziabari, and R. Yousefi, Efficiency enhancement of ultra-thin CIGS solar cells using bandgap grading and embedding Au plasmonic nanoparticles. Plasmonics 15(4), 1173 (2020).CrossRef
24.
go back to reference N. Beyrami, M. Saadat, and Z. Sohbatzadeh, A modeling study on utilizing In2S3 as a buffer layer in CIGS-based solar cells. J. Comput. Electron. 1 (2022) N. Beyrami, M. Saadat, and Z. Sohbatzadeh, A modeling study on utilizing In2S3 as a buffer layer in CIGS-based solar cells. J. Comput. Electron. 1 (2022)
25.
go back to reference M. Chadel, A. Chadel, B. Benyoucef, and M. Aillerie, Enhancement in efficiency of CIGS solar cell by using a p-Si BSF layer. Energies 16(7), 2956 (2023).CrossRef M. Chadel, A. Chadel, B. Benyoucef, and M. Aillerie, Enhancement in efficiency of CIGS solar cell by using a p-Si BSF layer. Energies 16(7), 2956 (2023).CrossRef
26.
go back to reference M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, and D. Hariskos, CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J. Photovolt. 4(1), 440 (2013).CrossRef M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, and D. Hariskos, CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J. Photovolt. 4(1), 440 (2013).CrossRef
27.
go back to reference S. Kim, M.S. Mina, K. Kim, J. Gwak, and J. Kim, Application of a Sn4+ doped In2S3 thin film in a CIGS solar cell as a buffer layer. Sustain. Energy Fuels 4(1), 362 (2020).CrossRef S. Kim, M.S. Mina, K. Kim, J. Gwak, and J. Kim, Application of a Sn4+ doped In2S3 thin film in a CIGS solar cell as a buffer layer. Sustain. Energy Fuels 4(1), 362 (2020).CrossRef
28.
go back to reference S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Large-area Cd-free CIGS solar modules with In2S3 buffer layer deposited by ALCVD. Thin Solid Films 451, 562 (2004).CrossRef S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Large-area Cd-free CIGS solar modules with In2S3 buffer layer deposited by ALCVD. Thin Solid Films 451, 562 (2004).CrossRef
29.
go back to reference J. Ramanujam and U.P. Singh, Copper indium gallium selenide based solar cells–a review. Energy Environ. Sci. 10(6), 1306 (2017).CrossRef J. Ramanujam and U.P. Singh, Copper indium gallium selenide based solar cells–a review. Energy Environ. Sci. 10(6), 1306 (2017).CrossRef
30.
go back to reference J. Verschraegen and M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films 515(15), 6276 (2007).CrossRef J. Verschraegen and M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films 515(15), 6276 (2007).CrossRef
31.
go back to reference M. Burgelman, J. Verschraegen, B. Minnaert, and J. Marlein, Numerical simulation of thin film solar cells: practical exercises with SCAPS, in Proc. Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), Gent. 2007 (2007) M. Burgelman, J. Verschraegen, B. Minnaert, and J. Marlein, Numerical simulation of thin film solar cells: practical exercises with SCAPS, in Proc. Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), Gent. 2007 (2007)
32.
go back to reference K. Decock, J. Lauwaert, and M. Burgelman, Characterization of graded CIGS solar cells. Energy Procedia 2(1), 49 (2010).CrossRef K. Decock, J. Lauwaert, and M. Burgelman, Characterization of graded CIGS solar cells. Energy Procedia 2(1), 49 (2010).CrossRef
33.
go back to reference F. Jafarzadeh, H. Aghili, H. Nikbakht, and S. Javadpour, Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195 (2022).CrossRef F. Jafarzadeh, H. Aghili, H. Nikbakht, and S. Javadpour, Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195 (2022).CrossRef
34.
go back to reference H. Sabbah, J. Arayro, and R. Mezher, Numerical simulation and optimization of highly stable and efficient lead-free perovskite FA1−xCsxSnI3-based solar cells using SCAPS. Materials 15(14), 4761 (2022).CrossRef H. Sabbah, J. Arayro, and R. Mezher, Numerical simulation and optimization of highly stable and efficient lead-free perovskite FA1xCsxSnI3-based solar cells using SCAPS. Materials 15(14), 4761 (2022).CrossRef
35.
go back to reference Y. Ait-Wahmane, H. Mouhib, B. Ydir, A.A. Hssi, L. Atourki, A. Ihlal, and K. Bouabid, Comparison study between ZnO and TiO2 in CuO based solar cell using SCAPS-1D. Mater. Today Proc. 52, 166 (2022).CrossRef Y. Ait-Wahmane, H. Mouhib, B. Ydir, A.A. Hssi, L. Atourki, A. Ihlal, and K. Bouabid, Comparison study between ZnO and TiO2 in CuO based solar cell using SCAPS-1D. Mater. Today Proc. 52, 166 (2022).CrossRef
37.
go back to reference S. Gohri, S. Sharma, R. Pandey, J. Madan, and R. Sharma, Influence of SnS and Sn2S3 based BSF layers on the performance of CZTSSe solar cell, in Proc. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (2020), p. 2300 S. Gohri, S. Sharma, R. Pandey, J. Madan, and R. Sharma, Influence of SnS and Sn2S3 based BSF layers on the performance of CZTSSe solar cell, in Proc. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (2020), p. 2300
38.
go back to reference T. Dureja, A. Garg, S. Bhalla, D. Bhutani, and A. Khanna, Double lead-free perovskite solar cell for 19.9% conversion efficiency: a SCAPS-1D based simulation study. Mater. Today Proc. 71, 239 (2022).CrossRef T. Dureja, A. Garg, S. Bhalla, D. Bhutani, and A. Khanna, Double lead-free perovskite solar cell for 19.9% conversion efficiency: a SCAPS-1D based simulation study. Mater. Today Proc. 71, 239 (2022).CrossRef
39.
go back to reference D.B. Khadka, S. Kim, and J. Kim, A nonvacuum approach for fabrication of Cu2ZnSnSe4/In2S3 thin film solar cell and optoelectronic characterization. J. Phys. Chem. C 119(22), 12226 (2015).CrossRef D.B. Khadka, S. Kim, and J. Kim, A nonvacuum approach for fabrication of Cu2ZnSnSe4/In2S3 thin film solar cell and optoelectronic characterization. J. Phys. Chem. C 119(22), 12226 (2015).CrossRef
40.
go back to reference M.I. Hossain, Fabrication and characterization of CIGS solar cells with In2S3 buffer layer deposited by PVD technique. Chalcogenide Lett. 9(5), 185 (2012). M.I. Hossain, Fabrication and characterization of CIGS solar cells with In2S3 buffer layer deposited by PVD technique. Chalcogenide Lett. 9(5), 185 (2012).
41.
go back to reference D. Hariskos, W. Hempel, R. Menner, and W. Witte, Influence of substrate temperature during InxSy sputtering on Cu (In, Ga) Se2/buffer interface properties and solar cell performance. Appl. Sci. 10(3), 1052 (2020).CrossRef D. Hariskos, W. Hempel, R. Menner, and W. Witte, Influence of substrate temperature during InxSy sputtering on Cu (In, Ga) Se2/buffer interface properties and solar cell performance. Appl. Sci. 10(3), 1052 (2020).CrossRef
42.
go back to reference M. Umehara, S. Tajima, Y. Aoki, Y. Takeda, and T. Motohiro, Cu2Sn1−xGexS3 solar cells fabricated with a graded bandgap structure. Appl. Phys. Express 9(7), 072301 (2016).CrossRef M. Umehara, S. Tajima, Y. Aoki, Y. Takeda, and T. Motohiro, Cu2Sn1xGexS3 solar cells fabricated with a graded bandgap structure. Appl. Phys. Express 9(7), 072301 (2016).CrossRef
43.
go back to reference M.R. Golobostanfard and H. Abdizadeh, All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv. 6(14), 11903 (2016).CrossRef M.R. Golobostanfard and H. Abdizadeh, All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv. 6(14), 11903 (2016).CrossRef
44.
go back to reference M. Al-Hattab, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol. Energy 227, 13 (2021).CrossRef M. Al-Hattab, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol. Energy 227, 13 (2021).CrossRef
45.
go back to reference M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736 (2015).CrossRef M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736 (2015).CrossRef
46.
go back to reference S. Karthick, S. Velumani, and J. Bouclé, Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance. Sol. Energy 205, 349 (2020).CrossRef S. Karthick, S. Velumani, and J. Bouclé, Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance. Sol. Energy 205, 349 (2020).CrossRef
47.
go back to reference U. Mandadapu, S.V. Vedanayakam, and K. Thyagarajan, Simulation and analysis of lead based perovskite solar cell using SCAPS-1D, Indian. J. Sci. Technol. 10(11), 65 (2017). U. Mandadapu, S.V. Vedanayakam, and K. Thyagarajan, Simulation and analysis of lead based perovskite solar cell using SCAPS-1D, Indian. J. Sci. Technol. 10(11), 65 (2017).
48.
go back to reference N. Khoshsirat and N.A. Md Yunus, Numerical analysis of In2S3 layer thickness, band gap and doping density for effective performance of a CIGS solar cell using SCAPS. J. Electron. Mater. 45(11), 5721 (2016).CrossRef N. Khoshsirat and N.A. Md Yunus, Numerical analysis of In2S3 layer thickness, band gap and doping density for effective performance of a CIGS solar cell using SCAPS. J. Electron. Mater. 45(11), 5721 (2016).CrossRef
49.
go back to reference M.A. Ashraf and I. Alam, Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2(3), 035015 (2020).CrossRef M.A. Ashraf and I. Alam, Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2(3), 035015 (2020).CrossRef
50.
go back to reference M. Minbashi, A. Ghobadi, M. Ehsani, H.R. Dizaji, and N. Memarian, Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520 (2018).CrossRef M. Minbashi, A. Ghobadi, M. Ehsani, H.R. Dizaji, and N. Memarian, Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520 (2018).CrossRef
51.
go back to reference N. Rai, S. Rai, P.K. Singh, P. Lohia, and D. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31(19), 16269 (2020).CrossRef N. Rai, S. Rai, P.K. Singh, P. Lohia, and D. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31(19), 16269 (2020).CrossRef
52.
go back to reference U. Mandadapu, S.V. Vedanayakam, K. Thyagarajan, M.R. Reddy, and B. Babu, Design and simulation of high efficiency tin halide perovskite solar cell. Int. J. Renew. Energy Res. 7(4), 1603 (2017). U. Mandadapu, S.V. Vedanayakam, K. Thyagarajan, M.R. Reddy, and B. Babu, Design and simulation of high efficiency tin halide perovskite solar cell. Int. J. Renew. Energy Res. 7(4), 1603 (2017).
53.
go back to reference M. Burgelman and J. Marlein, Analysis of graded band gap solar cells with SCAPS, in Proc. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia (2008), p. 2151 M. Burgelman and J. Marlein, Analysis of graded band gap solar cells with SCAPS, in Proc. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia (2008), p. 2151
54.
go back to reference M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS manual. February (2016) M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS manual. February (2016)
55.
go back to reference W.T. Vetterling, W.H. Press, W.H. Press, S.A. Teukolsky, and B.P. Flannery, Numerical Recipes: Example Book C (Cambridge: Cambridge University Press, 1992). W.T. Vetterling, W.H. Press, W.H. Press, S.A. Teukolsky, and B.P. Flannery, Numerical Recipes: Example Book C (Cambridge: Cambridge University Press, 1992).
56.
go back to reference M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, and T. Nakada, Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS) 2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer, in Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), p. 0849 M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, and T. Nakada, Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS) 2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer, in Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), p. 0849
Metadata
Title
Augmenting CIGS Solar Cell Efficiency Through Multiple Grading Profile Analysis
Authors
Shivani Gohri
Jaya Madan
Rahul Pandey
Publication date
12-07-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10567-8

Other articles of this Issue 9/2023

Journal of Electronic Materials 9/2023 Go to the issue