Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 11/2023

23-05-2023 | Original Article

Automatic segmentation of orbital wall from CT images via a thin wall region supervision-based multi-scale feature search network

Authors: Jiangchang Xu, Dingzhong Zhang, Chunliang Wang, Huifang Zhou, Yinwei Li, Xiaojun Chen

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Orbital wall segmentation is critical for orbital measurement and reconstruction. However, the orbital floor and medial wall are made up of thin walls (TW) with low gradient values, making it difficult to segment the blurred areas of the CT images. Clinically, doctors have to manually repair the missing parts of TW, which is time-consuming and laborious.

Methods

To address these issues, this paper proposes an automatic orbital wall segmentation method based on TW region supervision using a multi-scale feature search network. First of all, in the encoding branch, the densely connected atrous spatial pyramid pooling based on the residual connection is adopted to achieve a multi-scale feature search. Then, for feature enhancement, multi-scale up-sampling and residual connection are applied to perform skip connection of features in multi-scale convolution. Finally, we explore a strategy for improving the loss function based on the TW region supervision, which effectively increases the TW region segmentation accuracy.

Results

The test results show that the proposed network performs well in terms of automatic segmentation. For the whole orbital wall region, the Dice coefficient (Dice) of segmentation accuracy reaches 96.086 ± 1.049%, the Intersection over Union (IOU) reaches 92.486 ± 1.924%, and the 95% Hausdorff distance (HD) reaches 0.509 ± 0.166 mm. For the TW region, the Dice reaches 91.470 ± 1.739%, the IOU reaches 84.327 ± 2.938%, and the 95% HD reaches 0.481 ± 0.082 mm. Compared with other segmentation networks, the proposed network improves the segmentation accuracy while filling the missing parts in the TW region.

Conclusion

In the proposed network, the average segmentation time of each orbital wall is only 4.05 s, obviously improving the segmentation efficiency of doctors. In the future, it may have a practical significance in clinical applications such as preoperative planning for orbital reconstruction, orbital modeling, orbital implant design, and so on.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rossin EJ, Szypko C, Giese I, Hall N, Gardiner MF, Lorch A (2021) Factors associated with increased risk of serious ocular injury in the setting of orbital fracture. JAMA Ophthalmol 139(1):77–83CrossRefPubMed Rossin EJ, Szypko C, Giese I, Hall N, Gardiner MF, Lorch A (2021) Factors associated with increased risk of serious ocular injury in the setting of orbital fracture. JAMA Ophthalmol 139(1):77–83CrossRefPubMed
2.
go back to reference Chepurnyi Y, Chernohorskyi D, Prykhodko D, Poutala A, Kolchak A (2020) Reliability of orbital volume measurements based on computed tomography segmentation: validation of different algorithms in orbital trauma patients. J Craniomaxillofac Surg 48:574–581CrossRefPubMed Chepurnyi Y, Chernohorskyi D, Prykhodko D, Poutala A, Kolchak A (2020) Reliability of orbital volume measurements based on computed tomography segmentation: validation of different algorithms in orbital trauma patients. J Craniomaxillofac Surg 48:574–581CrossRefPubMed
3.
go back to reference Wildea F, Krauß O, Sakkas A, Mascha F, Pietzka S, Schramm A (2019) Custom wave-shaped CAD/CAM orbital wall implants for the management of post-enucleation socket syndrome. J Craniomaxillofac Surg 47:1398–1405CrossRef Wildea F, Krauß O, Sakkas A, Mascha F, Pietzka S, Schramm A (2019) Custom wave-shaped CAD/CAM orbital wall implants for the management of post-enucleation socket syndrome. J Craniomaxillofac Surg 47:1398–1405CrossRef
4.
go back to reference Kim MJ, Lee MJ, Jeong WS, Hong H, Choi JW (2020) Three-dimensional computer modeling of standard orbital mean shape in Asians. J Plast Reconstr Aesthet Surg 73(3):548–555CrossRefPubMed Kim MJ, Lee MJ, Jeong WS, Hong H, Choi JW (2020) Three-dimensional computer modeling of standard orbital mean shape in Asians. J Plast Reconstr Aesthet Surg 73(3):548–555CrossRefPubMed
5.
go back to reference Hsung T, Lo J, Chong M, Goto TK, Cheung L (2018) Orbit segmentation by surface reconstruction with automatic sliced vertex screening. IEEE Trans Biomed Eng 64(4):828–838CrossRef Hsung T, Lo J, Chong M, Goto TK, Cheung L (2018) Orbit segmentation by surface reconstruction with automatic sliced vertex screening. IEEE Trans Biomed Eng 64(4):828–838CrossRef
6.
go back to reference Taghizadeh E, Terrier A, Becce F, Farron A, Büchler P (2019) Automated CT bone segmentation using statistical shape modelling and local template matching. Comput Methods Biomech Biomed Engin 22(16):1303–1310CrossRefPubMed Taghizadeh E, Terrier A, Becce F, Farron A, Büchler P (2019) Automated CT bone segmentation using statistical shape modelling and local template matching. Comput Methods Biomech Biomed Engin 22(16):1303–1310CrossRefPubMed
7.
go back to reference Kim H, Son T, Lee J, Kim HA, Cho H, Jeong WS, Choi JW, Kim Y (2019) Three-dimensional orbital wall modeling using paranasal sinus segmentation. J Craniomaxillofac Surg 47:959–967CrossRefPubMed Kim H, Son T, Lee J, Kim HA, Cho H, Jeong WS, Choi JW, Kim Y (2019) Three-dimensional orbital wall modeling using paranasal sinus segmentation. J Craniomaxillofac Surg 47:959–967CrossRefPubMed
8.
go back to reference Xu J, Zeng B, Egger J, Wang C, Smedby Ö, Jiang X, Chen X (2022) A review on AI-based medical image computing in head and neck surgery. Phys Med Biol 67:17TR01 Xu J, Zeng B, Egger J, Wang C, Smedby Ö, Jiang X, Chen X (2022) A review on AI-based medical image computing in head and neck surgery. Phys Med Biol 67:17TR01
9.
go back to reference Xu J, Jing M, Wang S, Yang C, Chen X (2019) A review of medical image detection for cancers in digestive system based on artificial intelligence. Expert Rev Med Devices 16(10):877–889CrossRefPubMed Xu J, Jing M, Wang S, Yang C, Chen X (2019) A review of medical image detection for cancers in digestive system based on artificial intelligence. Expert Rev Med Devices 16(10):877–889CrossRefPubMed
10.
go back to reference Lee M J, Hong H, Shim K W, Park S (2019) MGB-NET: orbital bone segmentation from head and neck CT images using multi-graylevel-bone convolutional networks. In: Proceedings of IEEE 16th international symposium on biomedical imaging (ISBI). IEEE, pp 692–695 Lee M J, Hong H, Shim K W, Park S (2019) MGB-NET: orbital bone segmentation from head and neck CT images using multi-graylevel-bone convolutional networks. In: Proceedings of IEEE 16th international symposium on biomedical imaging (ISBI). IEEE, pp 692–695
11.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention, Springer, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention, Springer, Cham, pp 234–241
12.
go back to reference Hamwood J, Schmutz B, Collins MJ, Allenby MC, Alonso-Caneiro D (2021) A deep learning method for automatic segmentation of the bony orbit in MRI and CT images. Sci Rep 11(1):13693CrossRefPubMedPubMedCentral Hamwood J, Schmutz B, Collins MJ, Allenby MC, Alonso-Caneiro D (2021) A deep learning method for automatic segmentation of the bony orbit in MRI and CT images. Sci Rep 11(1):13693CrossRefPubMedPubMedCentral
13.
go back to reference Li Z, Chen K, Yang J, Pan L, Wang Z, Yang P, Wu S, Li J (2022) Deep learning-based CT radiomics for feature representation and analysis of aging characteristics of Asian bony Orbit. J Craniofac Surg 33(1):312–318CrossRefPubMed Li Z, Chen K, Yang J, Pan L, Wang Z, Yang P, Wu S, Li J (2022) Deep learning-based CT radiomics for feature representation and analysis of aging characteristics of Asian bony Orbit. J Craniofac Surg 33(1):312–318CrossRefPubMed
14.
go back to reference Xu J, Wang S, Zhou Z, Liu J, Jiang X, Chen X (2020) Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net. Int J Comput Assist Radiol Surg 15:1457–1465CrossRefPubMed Xu J, Wang S, Zhou Z, Liu J, Jiang X, Chen X (2020) Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net. Int J Comput Assist Radiol Surg 15:1457–1465CrossRefPubMed
15.
go back to reference Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the IEEE fourth international conference on 3D vision, pp 565–571 Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the IEEE fourth international conference on 3D vision, pp 565–571
16.
go back to reference Wu Y, He K. Group normalization (2020) Int J Comput Vis 128(3):742–55 Wu Y, He K. Group normalization (2020) Int J Comput Vis 128(3):742–55
17.
go back to reference Chen L, Papandreou G, Kokkinos L, Murphy K, Yuille AL (2018) DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRefPubMed Chen L, Papandreou G, Kokkinos L, Murphy K, Yuille AL (2018) DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRefPubMed
18.
go back to reference Yong M, Yu K, Zhang C, Li Z, Yang K (2018) Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3684–3692 Yong M, Yu K, Zhang C, Li Z, Yang K (2018) Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3684–3692
19.
go back to reference Xu J, Liu J, Zhang D, Zhou Z, Jiang X, Zhang C, Chen X (2021) Automatic mandible segmentation from CT image using 3D fully convolutional neural network based on DenseASPP and attention gates. Int J Comput Assist Radiol Surg 16:1785–1794CrossRefPubMed Xu J, Liu J, Zhang D, Zhou Z, Jiang X, Zhang C, Chen X (2021) Automatic mandible segmentation from CT image using 3D fully convolutional neural network based on DenseASPP and attention gates. Int J Comput Assist Radiol Surg 16:1785–1794CrossRefPubMed
20.
go back to reference Xu J, Liu J, Zhang D, Zhou Z, Zhang C, Chen X (2021) A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput Biol Med 138:104925CrossRefPubMed Xu J, Liu J, Zhang D, Zhou Z, Zhang C, Chen X (2021) A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput Biol Med 138:104925CrossRefPubMed
21.
go back to reference Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y, Wu J (2020) UNet 3+: A full-scale connected UNet for medical image segmentation. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp1055–1059 Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y, Wu J (2020) UNet 3+: A full-scale connected UNet for medical image segmentation. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp1055–1059
22.
go back to reference Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207CrossRefPubMedPubMedCentral Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207CrossRefPubMedPubMedCentral
Metadata
Title
Automatic segmentation of orbital wall from CT images via a thin wall region supervision-based multi-scale feature search network
Authors
Jiangchang Xu
Dingzhong Zhang
Chunliang Wang
Huifang Zhou
Yinwei Li
Xiaojun Chen
Publication date
23-05-2023
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 11/2023
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-023-02924-z

Other articles of this Issue 11/2023

International Journal of Computer Assisted Radiology and Surgery 11/2023 Go to the issue

Premium Partner