Skip to main content
Top
Published in: Neural Computing and Applications 11/2019

11-06-2018 | Original Article

Back propagation bidirectional extreme learning machine for traffic flow time series prediction

Authors: Weidong Zou, Yuanqing Xia

Published in: Neural Computing and Applications | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

On account of transportation management, a predictive model of the traffic flow is built up that would precisely predict the traffic flow, reduce longer travel delays. In prediction model of traffic flow based on traditional neural network, the parameters of prediction model need to be tuned through iterative processing, and these methods easily get stuck in local minimum. The paper presents a novel prediction model based on back propagation bidirectional extreme learning machine (BP-BELM). Parameters of BP-BELM are not tuned by experience. Compared with back propagation neural network, radial basis function, support vector machine and other improved incremental ELM, the combined simulations and comparisons demonstrate that BP-BELM is used in predicting the traffic flow for its suitability and effectivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lv Y, Duan Y, Wang W, Li Z, Wang F (2015) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 2(16):865–873 Lv Y, Duan Y, Wang W, Li Z, Wang F (2015) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 2(16):865–873
2.
go back to reference Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 5(15):2191–2201CrossRef Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 5(15):2191–2201CrossRef
3.
go back to reference Kumar SV (2017) Traffic flow prediction using kalman filtering technique. Procedia Eng 187:582–587CrossRef Kumar SV (2017) Traffic flow prediction using kalman filtering technique. Procedia Eng 187:582–587CrossRef
4.
go back to reference Koesdwiady A, Soua R, Karray F (2016) Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans Veh Technol 12(65):9508–9517CrossRef Koesdwiady A, Soua R, Karray F (2016) Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans Veh Technol 12(65):9508–9517CrossRef
5.
go back to reference Xu Y, Kong Q, Klette R, Liu Y (2014) Accurate and interpretable bayesian MARS for traffic flow prediction. IEEE Trans Intell Transp Syst 6(15):2457–2469CrossRef Xu Y, Kong Q, Klette R, Liu Y (2014) Accurate and interpretable bayesian MARS for traffic flow prediction. IEEE Trans Intell Transp Syst 6(15):2457–2469CrossRef
6.
go back to reference Oh S, Kim Y, Hong J (2015) Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Trans Intell Transp Syst 5(16):2744–2755CrossRef Oh S, Kim Y, Hong J (2015) Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Trans Intell Transp Syst 5(16):2744–2755CrossRef
7.
go back to reference Moretti F, Pizzuti S, Panzieri S, Annunziato M (2015) Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167:3–7CrossRef Moretti F, Pizzuti S, Panzieri S, Annunziato M (2015) Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167:3–7CrossRef
8.
go back to reference Chan K, Dillon T, Singh J, Chang E (2012) Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg-marquardt algorithm. IEEE Trans Intell Transp Syst 2(13):644–654CrossRef Chan K, Dillon T, Singh J, Chang E (2012) Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg-marquardt algorithm. IEEE Trans Intell Transp Syst 2(13):644–654CrossRef
9.
go back to reference Chan K, Dillon T (2013) On-road sensor configuration design for traffic flow prediction using fuzzy neural networks and taguchi method. IEEE Trans Instrum Meas 1(62):50–59CrossRef Chan K, Dillon T (2013) On-road sensor configuration design for traffic flow prediction using fuzzy neural networks and taguchi method. IEEE Trans Instrum Meas 1(62):50–59CrossRef
10.
go back to reference Jeong Y, Byon Y, Castro-Neto M, Easa S (2013) Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans Intell Transp Syst 4(14):1700–1707CrossRef Jeong Y, Byon Y, Castro-Neto M, Easa S (2013) Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans Intell Transp Syst 4(14):1700–1707CrossRef
11.
go back to reference Polson N, Sokolov V (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol 79:1–17CrossRef Polson N, Sokolov V (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol 79:1–17CrossRef
12.
go back to reference Guo D, Zhang Y, Xiao Z, Mao M, Liu J (2015) Common nature of learning between bp-type and hopfiled-type neural networks. Neurocomputing 167:439–448CrossRef Guo D, Zhang Y, Xiao Z, Mao M, Liu J (2015) Common nature of learning between bp-type and hopfiled-type neural networks. Neurocomputing 167:439–448CrossRef
13.
go back to reference Qi XX, Yuan ZH, Han XW (2015) Diagnosis of misalignment faults by tacholess order tracking analysis and RBF networks. Neurocomputing 169:439–448CrossRef Qi XX, Yuan ZH, Han XW (2015) Diagnosis of misalignment faults by tacholess order tracking analysis and RBF networks. Neurocomputing 169:439–448CrossRef
14.
go back to reference Ekici S, Yildirim S, Poyraz M (2009) A transmission line fault locator based on Elman recurrent networks. Appl Soft Comput 9(1):341–347CrossRef Ekici S, Yildirim S, Poyraz M (2009) A transmission line fault locator based on Elman recurrent networks. Appl Soft Comput 9(1):341–347CrossRef
15.
go back to reference Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef
16.
go back to reference Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062CrossRef Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062CrossRef
17.
go back to reference Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468CrossRef
18.
go back to reference Miche Y, Sorjamaa A, Bas P, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162CrossRef Miche Y, Sorjamaa A, Bas P, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162CrossRef
19.
go back to reference Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357CrossRef Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357CrossRef
20.
go back to reference Lan Y, Soh YC, Huang GB (2010) Two-stage extreme learning machine for regression. Neurocomputing 73(16):3028–3038CrossRef Lan Y, Soh YC, Huang GB (2010) Two-stage extreme learning machine for regression. Neurocomputing 73(16):3028–3038CrossRef
21.
go back to reference Yang YM, Wang Y, Yuan X (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans Neural Netw Learn Syst 23(9):1498–1505CrossRef Yang YM, Wang Y, Yuan X (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans Neural Netw Learn Syst 23(9):1498–1505CrossRef
22.
go back to reference Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press, CambridgeCrossRef Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press, CambridgeCrossRef
23.
go back to reference He WW, Wang ZZ, Jiang H (2008) Model optimizing and feature selecting for support vector regression in time series forecasting. Neurocomputing 72(1):600–611CrossRef He WW, Wang ZZ, Jiang H (2008) Model optimizing and feature selecting for support vector regression in time series forecasting. Neurocomputing 72(1):600–611CrossRef
24.
go back to reference Wu YK, Tan HC, Qin LQ, Ran B, Jiang ZX (2018) A hybrid deep learning based traffic flow prediction method and its understanding. Transp Res Part C 90:166–180CrossRef Wu YK, Tan HC, Qin LQ, Ran B, Jiang ZX (2018) A hybrid deep learning based traffic flow prediction method and its understanding. Transp Res Part C 90:166–180CrossRef
25.
go back to reference Zhang HJ, Li JX, Ji YZ, Yue H (2017) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Industr Inf 13(2):616–624CrossRef Zhang HJ, Li JX, Ji YZ, Yue H (2017) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Industr Inf 13(2):616–624CrossRef
Metadata
Title
Back propagation bidirectional extreme learning machine for traffic flow time series prediction
Authors
Weidong Zou
Yuanqing Xia
Publication date
11-06-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3578-y

Other articles of this Issue 11/2019

Neural Computing and Applications 11/2019 Go to the issue

Premium Partner