Skip to main content
Top
Published in: Neural Computing and Applications 11/2019

11-06-2018 | Original Article

Topological structure regularized nonnegative matrix factorization for image clustering

Authors: Wenjie Zhu, Yunhui Yan, Yishu Peng

Published in: Neural Computing and Applications | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image representation is supposed to reveal the distinguishable feature and be captured in unsupervised fashion. Recently, nonnegative matrix factorization (NMF) has been widely used in capturing the parts-based feature for image representation. Previous NMF variants for image clustering first set the reduced rank as the number of clusters to obtain image representations. Then, K-means technology is adopted for ultimate clustering. However, the setting of rank is too rigid to preserve the geometrical structure of images, leading to unsuitable representation for the following clustering. Moreover, the image representation learning and clustering procedures are conducted individually which is inefficient as well as suboptimal for image clustering. This paper incorporates the constraint of topological structure into the procedure of NMF for simultaneously accomplishing nonnegative image representation and image clustering task. The proposed topological structure regularized NMF (TNMF) makes the rank bigger than the number of clusters, allotting one image more than one coarse clusters to guarantee the geometrical structure of images. In addition, a connected graph constructed by the coefficient matrix is enforced to have the strong connected components whose number equals to the number of clusters. By checking the number of connected components of graph against the number of clusters during the learning procedure, the optimization of TNMF is accomplished using alternative update rules. Extensive experiments on the challenging face, digit, and object data sets demonstrate the effectiveness of TNMF compared with competitive NMF variants for image clustering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
In this paper, we call the columns of learned basis matrix as coarse centroids when the rank is bigger than the required number of clusters.
 
2
The theoretical computation complexity of the eigenvalue decomposition is reported in this paper. However, the eigenvalue decomposition operation can be accelerated due to the property of the Laplacian matrix, symmetric and sparse.
 
Literature
1.
go back to reference Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791CrossRef Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791CrossRef
2.
go back to reference Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. NIPS, Barcelona Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. NIPS, Barcelona
3.
go back to reference Zeng K, Yu J, Li CH, You J, Jin TS (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138(11):209–217CrossRef Zeng K, Yu J, Li CH, You J, Jin TS (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138(11):209–217CrossRef
4.
go back to reference Yi YG, Shi YJ, Zhang HJ, Wang JZ, Kong J (2015) Label propagation based semi-supervised non-negative matrix factorization for feature extraction. Neurocomputing 149(PB):1021–1037CrossRef Yi YG, Shi YJ, Zhang HJ, Wang JZ, Kong J (2015) Label propagation based semi-supervised non-negative matrix factorization for feature extraction. Neurocomputing 149(PB):1021–1037CrossRef
5.
go back to reference Wang ZF, Kong XW, Fu HY, Li M, Zhang YJ (2015) Feature extraction via multi-view non-negative matrix factorization with local graph regularization. In: ICIP Wang ZF, Kong XW, Fu HY, Li M, Zhang YJ (2015) Feature extraction via multi-view non-negative matrix factorization with local graph regularization. In: ICIP
6.
go back to reference Yang SZ, Hou CP, Zhang CS, Wu Y (2013) Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning. Neural Comput Appl 23(2):541–559CrossRef Yang SZ, Hou CP, Zhang CS, Wu Y (2013) Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning. Neural Comput Appl 23(2):541–559CrossRef
7.
go back to reference Tong M, Bu H, Zhao M, Xi S, Li H (2017) Non-negative enhanced discriminant matrix factorization method with sparsity regularization. Neural Comput Appl 2:1–24 Tong M, Bu H, Zhao M, Xi S, Li H (2017) Non-negative enhanced discriminant matrix factorization method with sparsity regularization. Neural Comput Appl 2:1–24
8.
go back to reference Lu YW, Lai ZH, Xu Y, Li XL, Zhang D, Yuan C (2017) Nonnegative discriminant matrix factorization. IEEE Trans Circuits Syst Video Technol 27(7):1392–1405CrossRef Lu YW, Lai ZH, Xu Y, Li XL, Zhang D, Yuan C (2017) Nonnegative discriminant matrix factorization. IEEE Trans Circuits Syst Video Technol 27(7):1392–1405CrossRef
9.
go back to reference Akashi Y, Okatani T (2016) Separation of reflection components by sparse non-negative matrix factorization. Comput Vis Image Underst 146:77–85CrossRef Akashi Y, Okatani T (2016) Separation of reflection components by sparse non-negative matrix factorization. Comput Vis Image Underst 146:77–85CrossRef
10.
go back to reference He W, Zhang HY, Zhang LP (2016) Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE J Sel Topics Appl Earth Observ Remote Sens 9(9):4267–4279CrossRef He W, Zhang HY, Zhang LP (2016) Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE J Sel Topics Appl Earth Observ Remote Sens 9(9):4267–4279CrossRef
11.
go back to reference Wu ZB, Ye S, Liu JJ, Sun L, Wei ZH (2014) Sparse non-negative matrix factorization on GPUs for hyperspectral unmixing. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(8):3640–3649CrossRef Wu ZB, Ye S, Liu JJ, Sun L, Wei ZH (2014) Sparse non-negative matrix factorization on GPUs for hyperspectral unmixing. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(8):3640–3649CrossRef
12.
go back to reference Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, HobokenMATH Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, HobokenMATH
13.
go back to reference Gersho A, Gray RM (1992) Vector quantization and signal compression. Kluwer Academic Press, NorwellCrossRef Gersho A, Gray RM (1992) Vector quantization and signal compression. Kluwer Academic Press, NorwellCrossRef
14.
go back to reference Zhang HJ, Wu QMJ, Chow TWS, Zhao MB (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recogn 45(5):1866–1876CrossRef Zhang HJ, Wu QMJ, Chow TWS, Zhao MB (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recogn 45(5):1866–1876CrossRef
15.
go back to reference Zhu WJ, Yan YH, Peng YS (2017) Pair of projections based on sparse consistence with applications to efficient face recognition. Sig Process Image Commun 55:32–40CrossRef Zhu WJ, Yan YH, Peng YS (2017) Pair of projections based on sparse consistence with applications to efficient face recognition. Sig Process Image Commun 55:32–40CrossRef
16.
go back to reference Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc 28(1):100–108MATH Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc 28(1):100–108MATH
17.
go back to reference Buono ND, Pio G (2015) Non-negative matrix Tri-Factorization for co-clustering: an analysis of the block matrix. Inf Sci 301:13–26CrossRef Buono ND, Pio G (2015) Non-negative matrix Tri-Factorization for co-clustering: an analysis of the block matrix. Inf Sci 301:13–26CrossRef
18.
go back to reference Bampis CG, Maragos P, Bovik AC (2016) Projective non-negative matrix factorization for unsupervised graph clustering. In: ICIP Bampis CG, Maragos P, Bovik AC (2016) Projective non-negative matrix factorization for unsupervised graph clustering. In: ICIP
19.
go back to reference Dera D, Bouaynaya N, Polikar R, Fathallah-Shaykh HM (2016) Non-negative matrix factorization for non-parametric and unsupervised image clustering and segmentation. In: IJCNN Dera D, Bouaynaya N, Polikar R, Fathallah-Shaykh HM (2016) Non-negative matrix factorization for non-parametric and unsupervised image clustering and segmentation. In: IJCNN
20.
go back to reference Li XL, Cui GS, Dong YS (2017) Graph regularized non-negative low-rank matrix factorization for image clustering. IEEE Trans Cybern 47(11):3840–3853MathSciNetCrossRef Li XL, Cui GS, Dong YS (2017) Graph regularized non-negative low-rank matrix factorization for image clustering. IEEE Trans Cybern 47(11):3840–3853MathSciNetCrossRef
21.
go back to reference Li SZ, Hou XW, Zhang HJ, Cheng QS (2003) Learning spatially localized, parts-based representation. In: CVPR Li SZ, Hou XW, Zhang HJ, Cheng QS (2003) Learning spatially localized, parts-based representation. In: CVPR
22.
go back to reference Yang ZR, Yuan ZJ, Laaksonen J (2007) Projective nonnegative matrix factorization with applications to facial image processing. Int J Pattern Recognit Artif Intell 21(8):1353–1362CrossRef Yang ZR, Yuan ZJ, Laaksonen J (2007) Projective nonnegative matrix factorization with applications to facial image processing. Int J Pattern Recognit Artif Intell 21(8):1353–1362CrossRef
23.
go back to reference Yuan ZJ, Yang ZR, Oja E (2005) Projective nonnegative matrix factorization for image compression and feature extraction. In: Scandinavian Conference on Image Analysis, pp 333–342 Yuan ZJ, Yang ZR, Oja E (2005) Projective nonnegative matrix factorization for image compression and feature extraction. In: Scandinavian Conference on Image Analysis, pp 333–342
24.
go back to reference Choi S (2008) Algorithms for orthogonal nonnegative matrix factorization. In: IJCNN Choi S (2008) Algorithms for orthogonal nonnegative matrix factorization. In: IJCNN
25.
go back to reference Ding C, Li T, Peng W, Park H (2006) Orthogonal nonnegative matrix tri-factorizations for clustering. In: ACM Sigkdd International Conference on Knowledge Discovery and Data Mining Ding C, Li T, Peng W, Park H (2006) Orthogonal nonnegative matrix tri-factorizations for clustering. In: ACM Sigkdd International Conference on Knowledge Discovery and Data Mining
26.
go back to reference Pompili F, Gillis N, Absil PA, Glineur F (2012) Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing 141(4):15–25 Pompili F, Gillis N, Absil PA, Glineur F (2012) Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing 141(4):15–25
27.
go back to reference Cai D, He XF, Han JW, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560CrossRef Cai D, He XF, Han JW, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560CrossRef
28.
go back to reference Zeng K, Yu J, Li CH, You J, Jin TS (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138(11):209–217CrossRef Zeng K, Yu J, Li CH, You J, Jin TS (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138(11):209–217CrossRef
29.
go back to reference Liu HF, Wu ZH, Cai D, Huang TS (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311CrossRef Liu HF, Wu ZH, Cai D, Huang TS (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311CrossRef
30.
go back to reference Li GP, Zhang XY, Zheng SY, Li DY (2017) Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation. Neurocomputing 237:1–11CrossRef Li GP, Zhang XY, Zheng SY, Li DY (2017) Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation. Neurocomputing 237:1–11CrossRef
31.
go back to reference He XF, Cai D, Yan SC, Zhang HJ (2005) Neighborhood preserving embedding. In: ICCV He XF, Cai D, Yan SC, Zhang HJ (2005) Neighborhood preserving embedding. In: ICCV
32.
go back to reference Ding C, He XF, Horst DS, Jin R (2005) On the equivalence of nonnegative matrix factorization and K-means-spectral clustering, Factorization Ding C, He XF, Horst DS, Jin R (2005) On the equivalence of nonnegative matrix factorization and K-means-spectral clustering, Factorization
33.
go back to reference Mohar B, Alavi Y, Chartrand G, Oellermann OR, Schwenk AJ (1991) The Laplacian spectrum of graphs. Graph Theory Comb Appl 18(7):871–898MathSciNet Mohar B, Alavi Y, Chartrand G, Oellermann OR, Schwenk AJ (1991) The Laplacian spectrum of graphs. Graph Theory Comb Appl 18(7):871–898MathSciNet
34.
go back to reference Fan K (1949) On a theorem of Weyl concerning eigenvalues of linear transformations II. Proc Natl Acad Sci USA 36(1):652–655CrossRef Fan K (1949) On a theorem of Weyl concerning eigenvalues of linear transformations II. Proc Natl Acad Sci USA 36(1):652–655CrossRef
35.
go back to reference Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: ICML Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: ICML
36.
go back to reference Mairal J, Bach F, Ponce J, Sapiro G (2009) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11(1):19–60MathSciNetMATH Mairal J, Bach F, Ponce J, Sapiro G (2009) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11(1):19–60MathSciNetMATH
37.
go back to reference Hoyer PO (2002) Non-negative sparse coding. In: IEEE Workshop on Neural Networks for Signal Processing Hoyer PO (2002) Non-negative sparse coding. In: IEEE Workshop on Neural Networks for Signal Processing
38.
go back to reference Yang J, Chu DL, Zhang L, Xu Y, Yang JY (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1035CrossRef Yang J, Chu DL, Zhang L, Xu Y, Yang JY (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1035CrossRef
39.
go back to reference Cai D, He XF, Han JW (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637CrossRef Cai D, He XF, Han JW (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637CrossRef
40.
go back to reference Chen XL, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: AAAI conference on artificial intelligence Chen XL, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: AAAI conference on artificial intelligence
41.
go back to reference Zhang HJ, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Industr Inf 13(2):520–531CrossRef Zhang HJ, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Industr Inf 13(2):520–531CrossRef
42.
go back to reference Oyedotun OK, Khashman A (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28(12):1–11 Oyedotun OK, Khashman A (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28(12):1–11
Metadata
Title
Topological structure regularized nonnegative matrix factorization for image clustering
Authors
Wenjie Zhu
Yunhui Yan
Yishu Peng
Publication date
11-06-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3572-4

Other articles of this Issue 11/2019

Neural Computing and Applications 11/2019 Go to the issue

Premium Partner