Skip to main content
Top

2017 | OriginalPaper | Chapter

Bacterial Cellulose Nanoribbons: A New Bioengineering Additive for Biomedical and Food Applications

Authors : M. Osorio, C. Castro, J. Velásquez-Cock, L. Vélez-Acosta, L. Cáracamo, S. Sierra, R. Klaiss, D. Avendaño, C. Correa, C. Gómez, R. Zuluaga, D. Builes, P. Gañán

Published in: Industrial Applications of Renewable Biomass Products

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanostructures obtained from bacterial sources can be a valuable nanomaterial for biomedical and food applications. In this work the alternatives of cellulose nanoribbons produced by a Colombian-isolated species called Komagataeibacter medellinensis (Gluconacetobacter medellinensis) as potential additive for developed composites are explored. In this case, several agro-industrial residues such as pineapple peel juice or sugar cane juice were used such as culture media. Different materials were produced using in situ fermentation process throughout biosynthesis of cellulose nanoribbons, solvent casting technique, or inclusion during polymerization process. Different mechanical and physical properties as well as biomedical and environmental tests were evaluated. Results indicate that the incorporation of cellulose nanoribbons can improve mechanical and thermal properties of nanocomposites with respect to neat matrices. Environmental tests suggest that these materials are promising candidates in the development of biomedical devices or food ingredients.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson J, Baird P, Davis R et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205CrossRef Anderson J, Baird P, Davis R et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205CrossRef
go back to reference Bäckdahl H, Helenius G, Bodin A et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef Bäckdahl H, Helenius G, Bodin A et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef
go back to reference Badui Dergal S, Sara D, Valdés E et al (2006) Química de los alimentos, Cuarta edición edn. Pearson Educación, México, p 703 Badui Dergal S, Sara D, Valdés E et al (2006) Química de los alimentos, Cuarta edición edn. Pearson Educación, México, p 703
go back to reference Cai Z, Kim J (2009) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91CrossRef Cai Z, Kim J (2009) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91CrossRef
go back to reference Castro C, Zuluaga R, Putaux J-L et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102CrossRef Castro C, Zuluaga R, Putaux J-L et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102CrossRef
go back to reference Castro C, Cleenwerck I, Trcek J et al (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125CrossRef Castro C, Cleenwerck I, Trcek J et al (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125CrossRef
go back to reference Castro C, Vesterinen A, Zuluaga R et al (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21:1–10CrossRef Castro C, Vesterinen A, Zuluaga R et al (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21:1–10CrossRef
go back to reference Czaja W, Kawecki M, Wróblewski P et al (2007a) Biomedical applications of microbial cellulose in burn wound recovery. In: Brown RMJ, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 307–321CrossRef Czaja W, Kawecki M, Wróblewski P et al (2007a) Biomedical applications of microbial cellulose in burn wound recovery. In: Brown RMJ, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 307–321CrossRef
go back to reference Czaja W, Young D, Kawecki M et al (2007b) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja W, Young D, Kawecki M et al (2007b) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
go back to reference Dellaglio F, Cleenwerck I, Felis G et al (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370CrossRef Dellaglio F, Cleenwerck I, Felis G et al (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370CrossRef
go back to reference Dong H, Snyder J (2013) Nanocellulose foam containing active ingredients. US Patent No. US 20130330417 A1 Dong H, Snyder J (2013) Nanocellulose foam containing active ingredients. US Patent No. US 20130330417 A1
go back to reference Fang F, Orend G, Watanabe N et al (1996) Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271:499–502CrossRef Fang F, Orend G, Watanabe N et al (1996) Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271:499–502CrossRef
go back to reference Fernandes S, Oliveira L, Freire C et al (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef Fernandes S, Oliveira L, Freire C et al (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef
go back to reference Fink H, Gustafsson L, Bodin A et al (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434CrossRef Fink H, Gustafsson L, Bodin A et al (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434CrossRef
go back to reference Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRef Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRef
go back to reference Gao C, Wan Y, Yang C et al (2010) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145CrossRef Gao C, Wan Y, Yang C et al (2010) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145CrossRef
go back to reference Grande C, Torres F, Gomez C et al (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16:181–185 Grande C, Torres F, Gomez C et al (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16:181–185
go back to reference Grande C, Torres F, Gomez C et al (2009) Development of self-assembled bacterial cellulose–starch nanocomposites. Mater Sci Eng C 29:1098–1104CrossRef Grande C, Torres F, Gomez C et al (2009) Development of self-assembled bacterial cellulose–starch nanocomposites. Mater Sci Eng C 29:1098–1104CrossRef
go back to reference Hakkinen K, Harunaga J, Doyle A et al (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724CrossRef Hakkinen K, Harunaga J, Doyle A et al (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724CrossRef
go back to reference Hassan C, Peppas N (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRef Hassan C, Peppas N (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRef
go back to reference Huang H, Chen L-C, Lin S-B et al (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef Huang H, Chen L-C, Lin S-B et al (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef
go back to reference Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose — a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose — a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef
go back to reference Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef
go back to reference Kirkland J (2012) Niacin requirements for genomic stability. Mutat Res 733:14–20CrossRef Kirkland J (2012) Niacin requirements for genomic stability. Mutat Res 733:14–20CrossRef
go back to reference Klemm D, Schumann D, Kramer F et al (2009) Nanocellulose materials – different cellulose, different functionality. Macromol Symp 280:60–71CrossRef Klemm D, Schumann D, Kramer F et al (2009) Nanocellulose materials – different cellulose, different functionality. Macromol Symp 280:60–71CrossRef
go back to reference Leal-Egaña A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55:155–167CrossRef Leal-Egaña A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55:155–167CrossRef
go back to reference Lee Y, Kouvroukoglou S, McIntire L et al (1995) A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys J 69:1284–1298CrossRef Lee Y, Kouvroukoglou S, McIntire L et al (1995) A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys J 69:1284–1298CrossRef
go back to reference Lina F, Yue Z, Jin Z et al (2009) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering – frontiers and challenges. Rijeka, Intech, pp 249–274 Lina F, Yue Z, Jin Z et al (2009) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering – frontiers and challenges. Rijeka, Intech, pp 249–274
go back to reference Montoya Ú, Zuluaga R, Castro C et al (2012) Development of composite films based on thermoplastic starch and cellulose microfibrils from colombian agroindustrial wastes. J Thermoplast Compos Mater 27:413–426CrossRef Montoya Ú, Zuluaga R, Castro C et al (2012) Development of composite films based on thermoplastic starch and cellulose microfibrils from colombian agroindustrial wastes. J Thermoplast Compos Mater 27:413–426CrossRef
go back to reference Moreschi E, Matos J, Almeida-Muradian L (2009) Thermal analysis of vitamin PP Niacin and niacinamide. J Therm Anal Calorim 98:161–164CrossRef Moreschi E, Matos J, Almeida-Muradian L (2009) Thermal analysis of vitamin PP Niacin and niacinamide. J Therm Anal Calorim 98:161–164CrossRef
go back to reference Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 6:503–511CrossRef Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 6:503–511CrossRef
go back to reference Osorio M, Ortiz I, Caro G, Restrepo L et al (2014a) Matrices nanocompuestas de alcohol de polivinilo (PVA)/celulosa bacteriana (CB) para el crecimiento celular y la ingenieria de tejidos. Rev Colomb Mater 1:338–346 Osorio M, Ortiz I, Caro G, Restrepo L et al (2014a) Matrices nanocompuestas de alcohol de polivinilo (PVA)/celulosa bacteriana (CB) para el crecimiento celular y la ingenieria de tejidos. Rev Colomb Mater 1:338–346
go back to reference Osorio M, Restrepo D, Zuluaga R et al (2014b) Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. J Braz Chem Soc 25:1607–1613 Osorio M, Restrepo D, Zuluaga R et al (2014b) Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. J Braz Chem Soc 25:1607–1613
go back to reference Osorio M, Zuluaga R, Gañán P et al (2014c) Protección térmica de vitamina B3 con celulosa bacteriana y su aporte de fibra dietaría. Rev Fac Nac Agron 67:634–637 Osorio M, Zuluaga R, Gañán P et al (2014c) Protección térmica de vitamina B3 con celulosa bacteriana y su aporte de fibra dietaría. Rev Fac Nac Agron 67:634–637
go back to reference Parant N (2005) Elaboración de Gel Celulósico (nata) Producido por Acetobacter xylinum Sobre Jugo de Arándano (Vaccinium corymbosum). Univ. Austral Chile. Universidad Austral de Chile, Valdivia, p 47 Parant N (2005) Elaboración de Gel Celulósico (nata) Producido por Acetobacter xylinum Sobre Jugo de Arándano (Vaccinium corymbosum). Univ. Austral Chile. Universidad Austral de Chile, Valdivia, p 47
go back to reference Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711CrossRef Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711CrossRef
go back to reference Rouse J, van Dyke M (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014CrossRef Rouse J, van Dyke M (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014CrossRef
go back to reference Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R et al (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199CrossRef Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R et al (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199CrossRef
go back to reference Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRef Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRef
go back to reference Shi Z, Zhang Y, Phillips G et al (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef Shi Z, Zhang Y, Phillips G et al (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef
go back to reference Torres F, Commeaux S, Troncoso O (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878CrossRef Torres F, Commeaux S, Troncoso O (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878CrossRef
go back to reference Velásquez-Cock J, Ramírez E, Betancourt S et al (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213CrossRef Velásquez-Cock J, Ramírez E, Betancourt S et al (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213CrossRef
go back to reference Wan W, Guhados G (2013) Nanosilver coated bacterial cellulose. Patent: US 20130211308 A1 Wan W, Guhados G (2013) Nanosilver coated bacterial cellulose. Patent: US 20130211308 A1
go back to reference Wan W, Hutter J, Millon L et al (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K (ed) Cellulose nanocomposites. American Chemical Society, Washington, DC, pp 221–241CrossRef Wan W, Hutter J, Millon L et al (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K (ed) Cellulose nanocomposites. American Chemical Society, Washington, DC, pp 221–241CrossRef
go back to reference Wang J, Gao C, Zhang Y et al (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef Wang J, Gao C, Zhang Y et al (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef
go back to reference Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. Int J Syst Evol Microbiol 64:1670–1672CrossRef Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. Int J Syst Evol Microbiol 64:1670–1672CrossRef
go back to reference Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547CrossRef Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547CrossRef
Metadata
Title
Bacterial Cellulose Nanoribbons: A New Bioengineering Additive for Biomedical and Food Applications
Authors
M. Osorio
C. Castro
J. Velásquez-Cock
L. Vélez-Acosta
L. Cáracamo
S. Sierra
R. Klaiss
D. Avendaño
C. Correa
C. Gómez
R. Zuluaga
D. Builes
P. Gañán
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61288-1_6

Premium Partners