Skip to main content
Top
Published in: Wireless Networks 2/2018

01-08-2016

Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures

Authors: Naveen Jaglan, Samir Dev Gupta, Binod Kumar Kanaujia, Shweta Srivastava

Published in: Wireless Networks | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Circular monopole antenna for ultra-wide band applications with notch band transition from WLAN to WiMAX is presented. The proposed antenna rejects WiMAX band (3.3–3.8 GHz). Antennas utilises modified mushroom-type electromagnetic band gap (EBG) structures to achieve band-notched designs. The proposed inductance enhanced modified EBG structures are 34 % compact than the conventional mushroom EBG structures. The band notched antenna designs using EBG structures have advantages like notch-frequency tuning, antenna design independent approach and omnidirectional radiation pattern. The step wise effect of inductance enhancement and tuning of notch from WLAN band (5–6 GHz) to WiMAX band is shown. Effect of variation of EBG structure parameters on which notched frequency depends is investigated. The proposed antenna has been fabricated on low cost FR4 substrate with overall dimensions as (42 × 50 × 1.6) mm3. Measured results are in good agreement with simulated ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Federal Communications Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA. Federal Communications Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA.
2.
go back to reference Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1248.CrossRef Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1248.CrossRef
3.
go back to reference Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54(5), 1453–1460.CrossRef Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54(5), 1453–1460.CrossRef
4.
go back to reference Lee, W. S., Kim, D. Z., Kim, K. J., & Yu, J. W. (2006). Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2800–2806.CrossRef Lee, W. S., Kim, D. Z., Kim, K. J., & Yu, J. W. (2006). Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2800–2806.CrossRef
5.
go back to reference Chung, K., Kim, J., & Choi, J. (2005). Wideband microstrip-FED monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters, 15(11), 766–768.CrossRef Chung, K., Kim, J., & Choi, J. (2005). Wideband microstrip-FED monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters, 15(11), 766–768.CrossRef
6.
go back to reference Kim, Y., & Kwon, D. H. (2004). CPW-FED planar ultra-wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.CrossRef Kim, Y., & Kwon, D. H. (2004). CPW-FED planar ultra-wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.CrossRef
7.
go back to reference Abbosh, A. M., Bialkowski, M. E., Mazierska, J., & Jacob, M. V. (2006). A planar UWB antenna with signal rejection capability in the 4–6 GHz band. IEEE Microwave and Wireless Components Letters, 16(5), 278–280.CrossRef Abbosh, A. M., Bialkowski, M. E., Mazierska, J., & Jacob, M. V. (2006). A planar UWB antenna with signal rejection capability in the 4–6 GHz band. IEEE Microwave and Wireless Components Letters, 16(5), 278–280.CrossRef
8.
go back to reference Hu, S., Chen, H., Law, C. L., Shen, Z., Zui, L., Zhang, W., et al. (2007). Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 6, 70–73.CrossRef Hu, S., Chen, H., Law, C. L., Shen, Z., Zui, L., Zhang, W., et al. (2007). Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 6, 70–73.CrossRef
9.
go back to reference Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41(6), 294–296.CrossRef Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41(6), 294–296.CrossRef
10.
go back to reference Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.CrossRef Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.CrossRef
11.
go back to reference Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54(6), 1688–1692.CrossRef Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54(6), 1688–1692.CrossRef
12.
go back to reference Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.CrossRef Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.CrossRef
13.
go back to reference Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57(12), 3942–3950.CrossRef Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57(12), 3942–3950.CrossRef
14.
go back to reference Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61(5), 3952–3960.CrossRef Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61(5), 3952–3960.CrossRef
15.
go back to reference Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60(6), 2987–2992.CrossRef Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60(6), 2987–2992.CrossRef
16.
go back to reference Tang, M. C., Xiao, S., Deng, T., Wang, D., Guan, J., Wang, B., et al. (2011). Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation, 59(4), 1372–1376.CrossRef Tang, M. C., Xiao, S., Deng, T., Wang, D., Guan, J., Wang, B., et al. (2011). Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation, 59(4), 1372–1376.CrossRef
17.
go back to reference Deng, J. Y., Yin, Y. Z., Zhou, S. G., & Liu, Q. Z. (2008). Compact ultra-wideband antenna with tri-band notched characteristics. Electronics Letters, 44(21), 1231–1233.CrossRef Deng, J. Y., Yin, Y. Z., Zhou, S. G., & Liu, Q. Z. (2008). Compact ultra-wideband antenna with tri-band notched characteristics. Electronics Letters, 44(21), 1231–1233.CrossRef
18.
go back to reference Trang, N. D., Lee, D. H., & Park, H. C. (2011). Design and analysis of compact printed triple band-notched UWB antenna. IEEE Antennas and Wireless Propagation Letters, 10, 403–406.CrossRef Trang, N. D., Lee, D. H., & Park, H. C. (2011). Design and analysis of compact printed triple band-notched UWB antenna. IEEE Antennas and Wireless Propagation Letters, 10, 403–406.CrossRef
19.
go back to reference Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.CrossRef Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.CrossRef
20.
go back to reference Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.CrossRef Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.CrossRef
21.
go back to reference Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.CrossRef Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.CrossRef
22.
go back to reference Wang, C.-L., Shiue, G. H., Guo, W.-D., & Wu, R.-B. (2006). A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4209–4217.CrossRef Wang, C.-L., Shiue, G. H., Guo, W.-D., & Wu, R.-B. (2006). A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4209–4217.CrossRef
23.
go back to reference Xie, H.-H., Jiao, Y.-C., Song, K., & Yang, B. (2010). Miniature electromagnetic band-gap structure using spiral ground plane. Progress in Electromagnetics Research Letters, 17, 163–170.CrossRef Xie, H.-H., Jiao, Y.-C., Song, K., & Yang, B. (2010). Miniature electromagnetic band-gap structure using spiral ground plane. Progress in Electromagnetics Research Letters, 17, 163–170.CrossRef
24.
go back to reference Simovski, C. R., Maagt, P., & Melchakova, I. (2005). High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Transactions on Antennas and Propagation, 53(3), 908–914.CrossRef Simovski, C. R., Maagt, P., & Melchakova, I. (2005). High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Transactions on Antennas and Propagation, 53(3), 908–914.CrossRef
25.
go back to reference McVay, J., & Engheta, N. (2004). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.CrossRef McVay, J., & Engheta, N. (2004). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.CrossRef
26.
go back to reference Vardaxoglou, J. C., Gousetis, G., & Feresidis, A. P. (2007). Miniaturisation schemes for metallodielectric electromagnetic bandgap structures. IET Microwaves, Antennas and Propagation, 1(1), 234–239.CrossRef Vardaxoglou, J. C., Gousetis, G., & Feresidis, A. P. (2007). Miniaturisation schemes for metallodielectric electromagnetic bandgap structures. IET Microwaves, Antennas and Propagation, 1(1), 234–239.CrossRef
27.
go back to reference Yang, F., & Rahmat-Samii, Y. (2004). Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 41(6), 439–444.CrossRef Yang, F., & Rahmat-Samii, Y. (2004). Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 41(6), 439–444.CrossRef
28.
go back to reference Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., & Tangonan, G. (2003). Two-dimensional beam steering using an electrically tunable impedance surface. EEE Transactions on Antennas and Propagation, 51(10), 2713–2722.CrossRef Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., & Tangonan, G. (2003). Two-dimensional beam steering using an electrically tunable impedance surface. EEE Transactions on Antennas and Propagation, 51(10), 2713–2722.CrossRef
29.
go back to reference Boutayeb, H., & Denidni, T. A. (2006). Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures. IEEE Antennas and Wireless Propagation Letters, 5(1), 424–425.CrossRef Boutayeb, H., & Denidni, T. A. (2006). Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures. IEEE Antennas and Wireless Propagation Letters, 5(1), 424–425.CrossRef
30.
go back to reference Ge, Y., & Esselle, K. P. (2007). GA/FDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas & Propagation, 1(1), 158–164.CrossRef Ge, Y., & Esselle, K. P. (2007). GA/FDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas & Propagation, 1(1), 158–164.CrossRef
31.
go back to reference Dai, M., & Sung, C. W. (2013). Achieving high diversity and multiplexing gains in the asynchronous parallel relay network. Transactions on Emerging Telecommunications Technologies, 24(2), 232–243.CrossRef Dai, M., & Sung, C. W. (2013). Achieving high diversity and multiplexing gains in the asynchronous parallel relay network. Transactions on Emerging Telecommunications Technologies, 24(2), 232–243.CrossRef
32.
go back to reference Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra-wideband wireless communication. Hoboken: Wiley.CrossRef Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra-wideband wireless communication. Hoboken: Wiley.CrossRef
33.
go back to reference Oppermann, I., Hamalainen, M., & Linatti, J. (2004). UWB theory and applications. Hoboken: Wiley.CrossRef Oppermann, I., Hamalainen, M., & Linatti, J. (2004). UWB theory and applications. Hoboken: Wiley.CrossRef
34.
go back to reference Yang, F., & Rahmat-Samii, Y. (2004). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press. Yang, F., & Rahmat-Samii, Y. (2004). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press.
35.
go back to reference Sievenpiper, D. (1999). High-impedance electromagnetic surfaces. Ph.D. dissertation, Department of Electrical Engineering University of California, Los Angeles. Sievenpiper, D. (1999). High-impedance electromagnetic surfaces. Ph.D. dissertation, Department of Electrical Engineering University of California, Los Angeles.
36.
go back to reference Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology (IJMOT), 10(2), 79–88. Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology (IJMOT), 10(2), 79–88.
37.
go back to reference Jaglan, N., & Gupta, S. D. (2015). Reflection phase characteristics of EBG structures and Wlan band notched circular monopole antenna design. International Journal of Communications Antenna and Propagation (IRECAP), 5(4), 233–240.CrossRef Jaglan, N., & Gupta, S. D. (2015). Reflection phase characteristics of EBG structures and Wlan band notched circular monopole antenna design. International Journal of Communications Antenna and Propagation (IRECAP), 5(4), 233–240.CrossRef
Metadata
Title
Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures
Authors
Naveen Jaglan
Samir Dev Gupta
Binod Kumar Kanaujia
Shweta Srivastava
Publication date
01-08-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1343-7

Other articles of this Issue 2/2018

Wireless Networks 2/2018 Go to the issue