Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2018

16-04-2018

Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

Authors: Arka Dey, Joydeep Dhar, Sayantan Sil, Rajkumar Jana, Partha Pratim Ray

Published in: Journal of Materials Engineering and Performance | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (Eg = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference A.P. Alivisatos, Semiconductor Clusters, Nanocryst. Quant. Dots Sci., 1996, 271(5251), p 933–937 A.P. Alivisatos, Semiconductor Clusters, Nanocryst. Quant. Dots Sci., 1996, 271(5251), p 933–937
[2]
go back to reference S.W. Shin, S.G. Lee, J. Lee, C.N. Whang, J.H. Lee, I.H. Choi, T.G. Kim, and J.H. Song, Ion-Beam Nano-Patterning by Using Porous Anodic Alumina as a Mask, Nanotechnology, 2005, 16, p 1392–1395CrossRef S.W. Shin, S.G. Lee, J. Lee, C.N. Whang, J.H. Lee, I.H. Choi, T.G. Kim, and J.H. Song, Ion-Beam Nano-Patterning by Using Porous Anodic Alumina as a Mask, Nanotechnology, 2005, 16, p 1392–1395CrossRef
[3]
go back to reference F. Ansari and M. Salavati-Niasari, Simple Sol-Gel Auto-Combustion Synthesis and Characterization of Lead Hexaferrite by Utilizing Cherry Juice as a Novel Fuel and Green Capping Agent, Adv. Powder Technol., 2016, 27, p 2025–2031CrossRef F. Ansari and M. Salavati-Niasari, Simple Sol-Gel Auto-Combustion Synthesis and Characterization of Lead Hexaferrite by Utilizing Cherry Juice as a Novel Fuel and Green Capping Agent, Adv. Powder Technol., 2016, 27, p 2025–2031CrossRef
[4]
go back to reference M. Dadkhah, F. Ansari, and M. Salavati-Niasari, Thermal Treatment Synthesis of SnO2 Nanoparticles and Investigation of Its Light Harvesting Application, Appl. Phys. A, 2016, 122(1-9), p 700CrossRef M. Dadkhah, F. Ansari, and M. Salavati-Niasari, Thermal Treatment Synthesis of SnO2 Nanoparticles and Investigation of Its Light Harvesting Application, Appl. Phys. A, 2016, 122(1-9), p 700CrossRef
[5]
go back to reference M. Ghanbari, F. Ansari, and M. Salavati-Niasari, Simple Synthesis-Controlled Fabrication of Thallium Cadmium Iodide Nanostructures via a Novel Route and Photocatalytic Investigation in Degradation of Toxic Dyes, Inorg. Chim. Acta, 2017, 455, p 88–97CrossRef M. Ghanbari, F. Ansari, and M. Salavati-Niasari, Simple Synthesis-Controlled Fabrication of Thallium Cadmium Iodide Nanostructures via a Novel Route and Photocatalytic Investigation in Degradation of Toxic Dyes, Inorg. Chim. Acta, 2017, 455, p 88–97CrossRef
[6]
go back to reference K.N. Shreeknthan, B.V. Rajendra, V.B. Kasturi, and G.K. Shirakumar, Growth and Characterization of Semiconducting Cadmium Selenide Thin Films, Cryst. Res. Technol., 2003, 38(1), p 30–33CrossRef K.N. Shreeknthan, B.V. Rajendra, V.B. Kasturi, and G.K. Shirakumar, Growth and Characterization of Semiconducting Cadmium Selenide Thin Films, Cryst. Res. Technol., 2003, 38(1), p 30–33CrossRef
[7]
go back to reference P. Nazari, F. Ansari, B.A. Nejand, V. Ahmadi, M. Payandeh, and M. Salavati-Niasari, Physicochemical Interface Engineering of CuI/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells, J. Phys. Chem. C, 2017, 121, p 21935–21944CrossRef P. Nazari, F. Ansari, B.A. Nejand, V. Ahmadi, M. Payandeh, and M. Salavati-Niasari, Physicochemical Interface Engineering of CuI/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells, J. Phys. Chem. C, 2017, 121, p 21935–21944CrossRef
[8]
go back to reference O. Amiria, N. Mir, F. Ansari, and M. Salavati-Niasari, Design and Fabrication of a High Performance Inorganic Tandem Solar Cell with 11.5% Conversion Efficiency, Electrochim. Acta, 2017, 252, p 315–321CrossRef O. Amiria, N. Mir, F. Ansari, and M. Salavati-Niasari, Design and Fabrication of a High Performance Inorganic Tandem Solar Cell with 11.5% Conversion Efficiency, Electrochim. Acta, 2017, 252, p 315–321CrossRef
[9]
go back to reference S. Gupta, J.S. Meclure, and V.P. Singh, Phosphor Efficiency and Deposition Temperature in ZnS: Mn A.C. Thin Film Electroluminescence Display Devices, Thin Solid Films, 1997, 299(1–2), p 33–37CrossRef S. Gupta, J.S. Meclure, and V.P. Singh, Phosphor Efficiency and Deposition Temperature in ZnS: Mn A.C. Thin Film Electroluminescence Display Devices, Thin Solid Films, 1997, 299(1–2), p 33–37CrossRef
[10]
go back to reference R. Saravanann, S. Saravanakumar, and S. Lavanya, Growth and Local Structure Analysis of ZnS Nanoparticles, Phys. B, 2010, 405(17), p 3700–3703CrossRef R. Saravanann, S. Saravanakumar, and S. Lavanya, Growth and Local Structure Analysis of ZnS Nanoparticles, Phys. B, 2010, 405(17), p 3700–3703CrossRef
[11]
go back to reference Y.H. Lin, M. Li, C.W. Nan, and J. Li, Grain and Grain Boundary Effects in High-Permittivity Dielectric NiO-Based Ceramics, Appl. Phys. Lett., 2006, 89(3), p 032907CrossRef Y.H. Lin, M. Li, C.W. Nan, and J. Li, Grain and Grain Boundary Effects in High-Permittivity Dielectric NiO-Based Ceramics, Appl. Phys. Lett., 2006, 89(3), p 032907CrossRef
[12]
go back to reference A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das, and P.P. Ray, Investigation of Charge Transport Properties in Less Defective Nanostructured ZnO Based Schottky Diode, RSC. Adv., 2015, 5, p 36560–36567CrossRef A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das, and P.P. Ray, Investigation of Charge Transport Properties in Less Defective Nanostructured ZnO Based Schottky Diode, RSC. Adv., 2015, 5, p 36560–36567CrossRef
[13]
go back to reference Y.V.B. Santana, C.W. Raubach, M.M. Ferrer, F.L. Porta, J.R. Sambrano, V.M. Longo, E.R. Leite, and E. Longo, Experimental and Theoretical Studies on the Enhanced Photoluminescence Activity of Zinc Sulfide with a Capping Agent, J. Appl. Phys., 2011, 110(12), p 123507CrossRef Y.V.B. Santana, C.W. Raubach, M.M. Ferrer, F.L. Porta, J.R. Sambrano, V.M. Longo, E.R. Leite, and E. Longo, Experimental and Theoretical Studies on the Enhanced Photoluminescence Activity of Zinc Sulfide with a Capping Agent, J. Appl. Phys., 2011, 110(12), p 123507CrossRef
[14]
go back to reference A. Dey, S. Middya, R. Jana, M. Das, J. Datta, A. Layek, and P.P. Ray, Light Induced Charge Transport Property Analysis of Nanostructured ZnS Based Schottky Diode, J. Mater. Sci-Mater El., 2016, 27(6), p 6325–6335CrossRef A. Dey, S. Middya, R. Jana, M. Das, J. Datta, A. Layek, and P.P. Ray, Light Induced Charge Transport Property Analysis of Nanostructured ZnS Based Schottky Diode, J. Mater. Sci-Mater El., 2016, 27(6), p 6325–6335CrossRef
[15]
go back to reference F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, and Z. Hamidi, Synthesis of Spherical ZnS Based Nanocrystals Using Thioglycolic Assisted Hydrothermal Method, Cryst. Eng. Commun., 2012, 14, p 7338–7344CrossRef F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, and Z. Hamidi, Synthesis of Spherical ZnS Based Nanocrystals Using Thioglycolic Assisted Hydrothermal Method, Cryst. Eng. Commun., 2012, 14, p 7338–7344CrossRef
[16]
go back to reference P.S. Das, P.K. Chakraborty, B. Behera, N.K. Mohanty, and R.N.P. Choudhary, Impedance Spectroscopy Study of Na2SmV5O15 Ceramics, J. Adv. Ceramics., 2014, 3(1), p 1–6CrossRef P.S. Das, P.K. Chakraborty, B. Behera, N.K. Mohanty, and R.N.P. Choudhary, Impedance Spectroscopy Study of Na2SmV5O15 Ceramics, J. Adv. Ceramics., 2014, 3(1), p 1–6CrossRef
[17]
go back to reference W.T. Shaw, Complex Analysis with Mathematica, Cambridge University Press, Cambridge, 2006CrossRef W.T. Shaw, Complex Analysis with Mathematica, Cambridge University Press, Cambridge, 2006CrossRef
[18]
go back to reference B. Behera, P. Nayak, and R.N.P. Choudhary, Impedance Spectroscopy Study of NaBa2V5O15 Ceramic, J. Alloys. Compd., 2007, 436(1–2), p 226–232CrossRef B. Behera, P. Nayak, and R.N.P. Choudhary, Impedance Spectroscopy Study of NaBa2V5O15 Ceramic, J. Alloys. Compd., 2007, 436(1–2), p 226–232CrossRef
[19]
go back to reference S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation and Phonon Modes of NdCrO3 Nanostructure, J. Sol–Gel. Sci. Techn., 2014, 69(3), p 553–563CrossRef S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation and Phonon Modes of NdCrO3 Nanostructure, J. Sol–Gel. Sci. Techn., 2014, 69(3), p 553–563CrossRef
[20]
go back to reference G.E. Pike and C.H. Seager, The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance, J. Appl. Phys, 1979, 50, p 3414–3422CrossRef G.E. Pike and C.H. Seager, The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance, J. Appl. Phys, 1979, 50, p 3414–3422CrossRef
[21]
go back to reference T. Prakash and S. Ramasamy, Effect of Applied Bias Voltage on Grain Boundary Potential Barrier Height (Φb) in Semiconductor Nanocrystals, Electron. Mater. Lett., 2013, 9(2), p 227–230CrossRef T. Prakash and S. Ramasamy, Effect of Applied Bias Voltage on Grain Boundary Potential Barrier Height (Φb) in Semiconductor Nanocrystals, Electron. Mater. Lett., 2013, 9(2), p 227–230CrossRef
[22]
go back to reference S.K. Barik, R.N.P. Choudhary, and P.K. Mahapatra, Impedance Spectroscopy Study of Na1/2Sm1/2TiO3 Ceramic, Appl. Phys. A, 2007, 88, p 217–222CrossRef S.K. Barik, R.N.P. Choudhary, and P.K. Mahapatra, Impedance Spectroscopy Study of Na1/2Sm1/2TiO3 Ceramic, Appl. Phys. A, 2007, 88, p 217–222CrossRef
[23]
go back to reference A.P. Sakhya, A. Dutta, and T.P. Sinha, Dielectric and Impedance Spectroscopic Studies of Neodymium Gallate, Phys. B: Condens. Matter., 2016, 488, p 1–7CrossRef A.P. Sakhya, A. Dutta, and T.P. Sinha, Dielectric and Impedance Spectroscopic Studies of Neodymium Gallate, Phys. B: Condens. Matter., 2016, 488, p 1–7CrossRef
[24]
go back to reference K. Funke, Jump Relaxation Model and Coupling Model—A Comparison, J. Non-Cryst. Solids., 1994, 172–174(2), p 1215–1221CrossRef K. Funke, Jump Relaxation Model and Coupling Model—A Comparison, J. Non-Cryst. Solids., 1994, 172–174(2), p 1215–1221CrossRef
[25]
go back to reference S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of NdMnO3 Nanoparticles, Mater. Res. Bull., 2013, 48(11), p 4917–4923CrossRef S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of NdMnO3 Nanoparticles, Mater. Res. Bull., 2013, 48(11), p 4917–4923CrossRef
[26]
go back to reference M. Ahmad, M.A. Rafiq, Z. Imran, K. Rasool, R.N. Shahid, Y. Javed, and M.M. Hasan, Charge Conduction and Relaxation in MoS2 Nanoflakes Synthesized by Simple Solid State Reaction, J. Appl. Phys., 2013, 114(4), p 043710CrossRef M. Ahmad, M.A. Rafiq, Z. Imran, K. Rasool, R.N. Shahid, Y. Javed, and M.M. Hasan, Charge Conduction and Relaxation in MoS2 Nanoflakes Synthesized by Simple Solid State Reaction, J. Appl. Phys., 2013, 114(4), p 043710CrossRef
[27]
go back to reference P.S. Anantha and K. Hariharan, Ac Conductivity Analysis and Dielectric Relaxation Behaviour of NaNO3–Al2O3 Composites, Mater. Sci. Eng: B., 2005, 121(1–2), p 12–19CrossRef P.S. Anantha and K. Hariharan, Ac Conductivity Analysis and Dielectric Relaxation Behaviour of NaNO3–Al2O3 Composites, Mater. Sci. Eng: B., 2005, 121(1–2), p 12–19CrossRef
[28]
go back to reference A.K. Jonscher, Relaxation in Low-Loss Dielectrics, Universal Relaxation Law, Chelsea Dielectrics Press, London, 1996, p 259–268 A.K. Jonscher, Relaxation in Low-Loss Dielectrics, Universal Relaxation Law, Chelsea Dielectrics Press, London, 1996, p 259–268
[29]
go back to reference S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of PrFeO3 Nanoparticles, Solid State Sci., 2016, 58, p 55–63CrossRef S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of PrFeO3 Nanoparticles, Solid State Sci., 2016, 58, p 55–63CrossRef
[30]
go back to reference H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, and M. Talebian, Frequency Dependence of Ultrahigh Dielectric Constant of Novel Synthesized SnO2 Nanoparticles Thick Films, Current Applied Physics., 2011, 11(3), p 409–413CrossRef H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, and M. Talebian, Frequency Dependence of Ultrahigh Dielectric Constant of Novel Synthesized SnO2 Nanoparticles Thick Films, Current Applied Physics., 2011, 11(3), p 409–413CrossRef
[31]
go back to reference N. Kumar, E.A. Patterson, T. Frömling, and D.P. Cann, DC-Bias Dependent Impedance Spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 Ceramics, J. Mater. Chem. C, 2016, 4(9), p 1782–1786CrossRef N. Kumar, E.A. Patterson, T. Frömling, and D.P. Cann, DC-Bias Dependent Impedance Spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 Ceramics, J. Mater. Chem. C, 2016, 4(9), p 1782–1786CrossRef
Metadata
Title
Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles
Authors
Arka Dey
Joydeep Dhar
Sayantan Sil
Rajkumar Jana
Partha Pratim Ray
Publication date
16-04-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3359-x

Other articles of this Issue 6/2018

Journal of Materials Engineering and Performance 6/2018 Go to the issue

Premium Partners