Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2017

31-05-2017 | Original Article

Bio-oil upgrading via vapor-phase ketonization over nanostructured FeOx and MnOx: catalytic performance and mechanistic insight

Authors: Eleni Heracleous, Dong Gu, Ferdi Schüth, James A. Bennett, Mark A. Isaacs, Adam F. Lee, Karen Wilson, Angelos A. Lappas

Published in: Biomass Conversion and Biorefinery | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, nanostructured FeOx and MnOx were prepared by two synthetic routes, nanocasting and hydrothermal, and evaluated for bio-oil upgrading via vapor-phase ketonization. Catalytic performance measurements in the ketonization of representative model compounds, acetic and propionic acid, at 335 °C showed high activity for the hydrothermal MnOx and nanocast FeOx (conversion >90%) with high selectivity to the respective ketones. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies followed by temperature-programmed thermogravimetric analysis (TGA) and MS showed that the reactive intermediates are bidentate acetate species that desorb as acetone over FeOx and unreacted acetic acid over MnOx (in contradiction to its associated catalysis). Powder X-ray diffraction and X-ray photoelectron spectroscopy analysis of used samples revealed that MnO2 was reduced to MnO during reaction. The relative surface concentrations of adsorbed acetate for the used MnOx catalysts (from DRIFTS) correlated with their corresponding acetic acid conversion (from ketonization studies), indicating that MnO is the active phase for acetic acid ketonization, with MnO2 a precursor which is reduced in situ at temperatures >300 °C. Vapor-phase ketonization of the aqueous phase of a real thermal bio-oil, produced from the fast pyrolysis of lignocellulosic biomass, was demonstrated successfully over MnOx prepared by the hydrothermal route, highlighting this as an attractive approach for the upgrading of pyrolysis bio-oils.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102CrossRef Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102CrossRef
2.
go back to reference Pham TN, Shi D, Resasco DE (2014) Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Appl Catal B 145:10–23CrossRef Pham TN, Shi D, Resasco DE (2014) Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Appl Catal B 145:10–23CrossRef
3.
go back to reference Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gaertner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421CrossRef Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gaertner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421CrossRef
4.
go back to reference Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266:71–78CrossRef Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266:71–78CrossRef
5.
go back to reference Gurbuz E, Kunkes EL, Dumesic JA (2010) Integration of C–C coupling reactions of biomass-derived oxygenates to fuel-grade compounds. Appl Catal B 94:134–141CrossRef Gurbuz E, Kunkes EL, Dumesic JA (2010) Integration of C–C coupling reactions of biomass-derived oxygenates to fuel-grade compounds. Appl Catal B 94:134–141CrossRef
6.
go back to reference Martinez R, Huff MC, Barteau MA (2004) Ketonization of acetic acid on titania-functionalized silica monoliths. J Catal 222:404–409CrossRef Martinez R, Huff MC, Barteau MA (2004) Ketonization of acetic acid on titania-functionalized silica monoliths. J Catal 222:404–409CrossRef
7.
go back to reference Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A 320:122–133CrossRef Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A 320:122–133CrossRef
8.
go back to reference Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A Chem 227:231–239CrossRef Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A Chem 227:231–239CrossRef
9.
go back to reference Idriss H, Diagne C, Hindermann JP, Kiennemann A, Barteau MA (1995) Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J Catal 155:219–237CrossRef Idriss H, Diagne C, Hindermann JP, Kiennemann A, Barteau MA (1995) Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J Catal 155:219–237CrossRef
10.
go back to reference Glinski M, Kijenski J, Jakubowski A (1995) Ketones from monocarboxylic acids: catalytic ketonization over oxide systems. Appl Catal A 128:209–217CrossRef Glinski M, Kijenski J, Jakubowski A (1995) Ketones from monocarboxylic acids: catalytic ketonization over oxide systems. Appl Catal A 128:209–217CrossRef
11.
go back to reference Pestman R, van Duijne A, Pieterse JAZ, Ponec V (1995) The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J Mol Catal A 103:175–180CrossRef Pestman R, van Duijne A, Pieterse JAZ, Ponec V (1995) The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J Mol Catal A 103:175–180CrossRef
12.
go back to reference Pestman R, Koster RM, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J Catal 168:255–264CrossRef Pestman R, Koster RM, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J Catal 168:255–264CrossRef
13.
go back to reference Grootendorst EJ, Pestman R, Koster RM, Ponec V (1994) Selective reduction of acetic acid to acetaldehyde on iron oxides. J Catal 148:261–269CrossRef Grootendorst EJ, Pestman R, Koster RM, Ponec V (1994) Selective reduction of acetic acid to acetaldehyde on iron oxides. J Catal 148:261–269CrossRef
14.
go back to reference Pestman R, Koster RM, Boellaard E, van der Kraan AM, Ponec V (1998) Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. J Catal 174:142–152CrossRef Pestman R, Koster RM, Boellaard E, van der Kraan AM, Ponec V (1998) Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. J Catal 174:142–152CrossRef
15.
go back to reference Wang Y, Davis BH (1999) Fischer–Tropsch synthesis. Conversion of alcohols over iron oxide and iron carbide catalysts. Appl Catal A 180:277–285CrossRef Wang Y, Davis BH (1999) Fischer–Tropsch synthesis. Conversion of alcohols over iron oxide and iron carbide catalysts. Appl Catal A 180:277–285CrossRef
16.
go back to reference Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168:265–272CrossRef Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168:265–272CrossRef
17.
go back to reference Glinski M, Kijenski J (2000) Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Appl Catal A 190:87–91CrossRef Glinski M, Kijenski J (2000) Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Appl Catal A 190:87–91CrossRef
18.
go back to reference Glinski M, Kijenski J (2000) Catalytic ketonization of carboxylic acids synthesis of saturated and unsaturated ketones. React Kinet Catal Lett 69:123–128CrossRef Glinski M, Kijenski J (2000) Catalytic ketonization of carboxylic acids synthesis of saturated and unsaturated ketones. React Kinet Catal Lett 69:123–128CrossRef
19.
go back to reference Parida KM, Samal A, Das NN (1998) Catalytic ketonization of monocarboxylic acids over Indian Ocean manganese nodules. Appl Catal A 166:201–205CrossRef Parida KM, Samal A, Das NN (1998) Catalytic ketonization of monocarboxylic acids over Indian Ocean manganese nodules. Appl Catal A 166:201–205CrossRef
20.
go back to reference Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473CrossRef Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473CrossRef
21.
go back to reference Hasan MA, Zaki MI, Pasupulety L (2003) Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Appl Catal A 243:81–92CrossRef Hasan MA, Zaki MI, Pasupulety L (2003) Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Appl Catal A 243:81–92CrossRef
22.
go back to reference Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2 (001) single-crystal surfaces. J Catal 125:353–375CrossRef Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2 (001) single-crystal surfaces. J Catal 125:353–375CrossRef
23.
go back to reference Barteau MA (1993) Site requirements of reactions on oxide surfaces. J Vac Sci Technol A 11:2162–2168CrossRef Barteau MA (1993) Site requirements of reactions on oxide surfaces. J Vac Sci Technol A 11:2162–2168CrossRef
24.
go back to reference Gu D, Schüth F (2014) Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev 43:313–344CrossRef Gu D, Schüth F (2014) Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev 43:313–344CrossRef
25.
go back to reference Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schüth F (2015) Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J Am Chem Soc 137:11407–11418CrossRef Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schüth F (2015) Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J Am Chem Soc 137:11407–11418CrossRef
26.
go back to reference Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9:300–306CrossRef Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9:300–306CrossRef
27.
go back to reference Gu D, Tseng J-C, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Soulimani F, Weckhuysen B, Schüth F (2016) Gold on different manganese oxides: ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J Am Chem Soc 138:9572–9580CrossRef Gu D, Tseng J-C, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Soulimani F, Weckhuysen B, Schüth F (2016) Gold on different manganese oxides: ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J Am Chem Soc 138:9572–9580CrossRef
28.
go back to reference Mattsson A, Österlund L (2010) Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J Phys Chem C 114:14121–14132CrossRef Mattsson A, Österlund L (2010) Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J Phys Chem C 114:14121–14132CrossRef
29.
go back to reference Ma Q, Liu Y, Liu C, He H (2012) Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. PCCP 14:8403–8409CrossRef Ma Q, Liu Y, Liu C, He H (2012) Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. PCCP 14:8403–8409CrossRef
30.
go back to reference Finocchio E, Willey RJ, Busca G, Lorenzelli V (1997) FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces part 3—comparison of the oxidation of C3 organic compounds over Co3O4, MgCr2O4 and CuO. J. Chem. Soc. Faraday Trans 93:175–180CrossRef Finocchio E, Willey RJ, Busca G, Lorenzelli V (1997) FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces part 3—comparison of the oxidation of C3 organic compounds over Co3O4, MgCr2O4 and CuO. J. Chem. Soc. Faraday Trans 93:175–180CrossRef
31.
go back to reference Bell KJ, Brooksby PA, Polson MIJ, Downard AJ (2014) Evidence for covalent bonding of aryl groups to MnO2 nanorods from diazonium-based grafting. Chem Commun 50:13687–13690CrossRef Bell KJ, Brooksby PA, Polson MIJ, Downard AJ (2014) Evidence for covalent bonding of aryl groups to MnO2 nanorods from diazonium-based grafting. Chem Commun 50:13687–13690CrossRef
32.
go back to reference Karimi E, Gomez A, Kycia SW, Schlaf M (2010) Thermal decomposition of acetic and formic acid catalyzed by red mud—implications for the potential use of red mud as a pyrolysis bio-oil upgrading catalyst. Energy Fuel 24:2747–2757CrossRef Karimi E, Gomez A, Kycia SW, Schlaf M (2010) Thermal decomposition of acetic and formic acid catalyzed by red mud—implications for the potential use of red mud as a pyrolysis bio-oil upgrading catalyst. Energy Fuel 24:2747–2757CrossRef
33.
go back to reference Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975CrossRef Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975CrossRef
34.
go back to reference Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Original Appl Surf Sci 257:2717–2730CrossRef Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Original Appl Surf Sci 257:2717–2730CrossRef
Metadata
Title
Bio-oil upgrading via vapor-phase ketonization over nanostructured FeOx and MnOx: catalytic performance and mechanistic insight
Authors
Eleni Heracleous
Dong Gu
Ferdi Schüth
James A. Bennett
Mark A. Isaacs
Adam F. Lee
Karen Wilson
Angelos A. Lappas
Publication date
31-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2017
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0268-4

Other articles of this Issue 3/2017

Biomass Conversion and Biorefinery 3/2017 Go to the issue