Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2017

06-03-2017 | Review Article

Towards first-principles based kinetic modeling of biomass fast pyrolysis

Authors: Arturo Gonzalez-Quiroga, Kevin M. Van Geem, Guy B. Marin

Published in: Biomass Conversion and Biorefinery | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomass conversion to chemicals and fuels through fast pyrolysis shows great potential but requires a more fundamental approach for its deployment. To this end, molecular-based kinetic modeling is starting to play a central role in the prediction of the molecular composition of bio-oil. A molecular-level representation of biomass provides the start point for the generation of detailed pyrolysis reaction networks for both the condensed and the gas phases. Significant progress has been made for cellulose, glucose-based carbohydrates, and lignin, together with the incorporation of the catalytic effects of minerals. Ab initio techniques are widely used to discriminate between reaction mechanisms and to calculate kinetic parameters. Automatic kinetic model generation is expected to play an even more important role in fast pyrolysis as it does already today. Experimental techniques enabled to obtain intrinsic kinetics and to decouple the timescales between reaction kinetics and analytic techniques. This greatly benefits the improvement of detailed kinetic models. The prospects for achieving a first-principles based kinetic model of biomass fast pyrolysis are promising. However, significant work is still needed to couple condensed- and gas-phase reaction networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shen D, Jin W, Hu J, Xiao R, Luo K (2015) An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sust Energ Rev 51:761–774. doi:10.1016/j.rser.2015.06.054 CrossRef Shen D, Jin W, Hu J, Xiao R, Luo K (2015) An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sust Energ Rev 51:761–774. doi:10.​1016/​j.​rser.​2015.​06.​054 CrossRef
2.
3.
go back to reference Howe D, Westover T, Carpenter D, Santosa D, Emerson R, Deutch S, Starace A, Kutnyakov I, Lukins C (2015) Field-to-fuel performance testing of lignocellulosic feedstocks: an integrated study of the fast pyrolysis−hydrotreating pathway. Energy Fuel 29:3188–3197. doi:10.1021/acs.energyfuels.5b00304 CrossRef Howe D, Westover T, Carpenter D, Santosa D, Emerson R, Deutch S, Starace A, Kutnyakov I, Lukins C (2015) Field-to-fuel performance testing of lignocellulosic feedstocks: an integrated study of the fast pyrolysis−hydrotreating pathway. Energy Fuel 29:3188–3197. doi:10.​1021/​acs.​energyfuels.​5b00304 CrossRef
4.
go back to reference Toraman HE, Vanholme R, Borén E, Vanwonterghem Y, Djokic MR, Yildiz G, Ronsse F, Prins W, Boerjan W, Van Geem KM, Marin GB (2016) Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds. Bioresour Technol 207:229–236. doi:10.1016/j.biortech.2016.02.022 CrossRef Toraman HE, Vanholme R, Borén E, Vanwonterghem Y, Djokic MR, Yildiz G, Ronsse F, Prins W, Boerjan W, Van Geem KM, Marin GB (2016) Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds. Bioresour Technol 207:229–236. doi:10.​1016/​j.​biortech.​2016.​02.​022 CrossRef
5.
go back to reference Gonzalez-Quiroga A, Djokic MR, Van Geem KM, Marin GB (2016) Conversion of solid waste to diesel via catalytic pressureless depolymerization: pilot scale production and detailed compositional characterization. Energy Fuel 30:8292–8303. doi:10.1021/acs.energyfuels.6b016 CrossRef Gonzalez-Quiroga A, Djokic MR, Van Geem KM, Marin GB (2016) Conversion of solid waste to diesel via catalytic pressureless depolymerization: pilot scale production and detailed compositional characterization. Energy Fuel 30:8292–8303. doi:10.​1021/​acs.​energyfuels.​6b016 CrossRef
7.
9.
go back to reference Klein MT, Hou G, Bertolacini R, Broadbelt LJ, Kumar A (2006) Molecular modeling in heavy hydrocarbon conversions. CRC Press, Boca Raton Klein MT, Hou G, Bertolacini R, Broadbelt LJ, Kumar A (2006) Molecular modeling in heavy hydrocarbon conversions. CRC Press, Boca Raton
15.
go back to reference Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613. doi:10.1007/s10570-015-0586-2 CrossRef Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613. doi:10.​1007/​s10570-015-0586-2 CrossRef
17.
24.
go back to reference Pyl SP, Hou Z, Van Geem KM, Reyniers M-F, Marin GB, Klein MT (2011) Modeling the composition of crude oil fractions using constrained homologous series. Ind Eng Chem Res 50:10850–10858. doi:10.1021/ie200583t CrossRef Pyl SP, Hou Z, Van Geem KM, Reyniers M-F, Marin GB, Klein MT (2011) Modeling the composition of crude oil fractions using constrained homologous series. Ind Eng Chem Res 50:10850–10858. doi:10.​1021/​ie200583t CrossRef
27.
go back to reference Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM (2014) Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation. Energy Fuel 28:3884–3898. doi:10.1021/ef500525v CrossRef Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM (2014) Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation. Energy Fuel 28:3884–3898. doi:10.​1021/​ef500525v CrossRef
32.
go back to reference Van de Vijver R, Vandewiele NM, Bhoorasingh PL, Slakman BL, Seyedzadeh Khanshan F, Carstensen HH, Reyniers MF, Marin GB, West RH, Van Geem KM (2015) Automatic mechanism and kinetic model generation for gas-and solution-phase processes: a perspective on best practices, recent advances, and future challenges. In J Chem Kinet 47:199–231. doi:10.1002/kin.20902 CrossRef Van de Vijver R, Vandewiele NM, Bhoorasingh PL, Slakman BL, Seyedzadeh Khanshan F, Carstensen HH, Reyniers MF, Marin GB, West RH, Van Geem KM (2015) Automatic mechanism and kinetic model generation for gas-and solution-phase processes: a perspective on best practices, recent advances, and future challenges. In J Chem Kinet 47:199–231. doi:10.​1002/​kin.​20902 CrossRef
34.
go back to reference Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012b) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424. doi:10.1039/c1ee02743c CrossRef Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012b) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424. doi:10.​1039/​c1ee02743c CrossRef
35.
37.
go back to reference Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22:4292–4300. doi:10.1021/ef800551t CrossRef Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22:4292–4300. doi:10.​1021/​ef800551t CrossRef
38.
go back to reference Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053. doi:10.1021/jf1008023 CrossRef Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053. doi:10.​1021/​jf1008023 CrossRef
39.
go back to reference Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 58:9054–9062. doi:10.1021/jf100807b CrossRef Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 58:9054–9062. doi:10.​1021/​jf100807b CrossRef
43.
go back to reference Fletcher TH, Pond HR, Webster J, Wooters J, Baxter LL (2012) Prediction of tar and light gas during pyrolysis of black liquor and biomass. Energy Fuel 26:3381–3387. doi:10.1021/ef300574n CrossRef Fletcher TH, Pond HR, Webster J, Wooters J, Baxter LL (2012) Prediction of tar and light gas during pyrolysis of black liquor and biomass. Energy Fuel 26:3381–3387. doi:10.​1021/​ef300574n CrossRef
44.
50.
51.
go back to reference Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer, BerlinCrossRef Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer, BerlinCrossRef
53.
go back to reference Vinu R, Broadbelt LJ (2012a) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826. doi:10.1039/C2EE22784C CrossRef Vinu R, Broadbelt LJ (2012a) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826. doi:10.​1039/​C2EE22784C CrossRef
55.
go back to reference Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014a) The alpha–bet(a) of glucose pyrolysis: computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustain Chem Eng 2:1461–1473. doi:10.1021/sc500113m CrossRef Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014a) The alpha–bet(a) of glucose pyrolysis: computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustain Chem Eng 2:1461–1473. doi:10.​1021/​sc500113m CrossRef
56.
go back to reference Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ (2014a) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Ind Eng Chem Res 53:13274–13289. doi:10.1021/ie502259w CrossRef Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ (2014a) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Ind Eng Chem Res 53:13274–13289. doi:10.​1021/​ie502259w CrossRef
57.
go back to reference Zhou X, Nolte MW, Shanks BH, Broadbelt LJ (2014b) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 2. Validation and evaluation of the mechanistic model. Ind Eng Chem Res 53:13290–13301. doi:10.1021/ie502260q CrossRef Zhou X, Nolte MW, Shanks BH, Broadbelt LJ (2014b) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 2. Validation and evaluation of the mechanistic model. Ind Eng Chem Res 53:13290–13301. doi:10.​1021/​ie502260q CrossRef
58.
go back to reference Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014b) The alpha–bet(a) of salty glucose pyrolysis: computational investigations reveal carbohydrate pyrolysis catalytic action by sodium ions. ACS Catal 5:192–202. doi:10.1021/cs501125n CrossRef Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014b) The alpha–bet(a) of salty glucose pyrolysis: computational investigations reveal carbohydrate pyrolysis catalytic action by sodium ions. ACS Catal 5:192–202. doi:10.​1021/​cs501125n CrossRef
59.
go back to reference Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016b) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 1: experiments and development of a mechanistic model. AICHE J 62:766–777. doi:10.1002/aic.15106 CrossRef Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016b) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 1: experiments and development of a mechanistic model. AICHE J 62:766–777. doi:10.​1002/​aic.​15106 CrossRef
60.
go back to reference Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016c) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 2: validation and evaluation of the mechanistic model. AICHE J 62:778–791. doi:10.1002/aic.15107 CrossRef Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016c) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 2: validation and evaluation of the mechanistic model. AICHE J 62:778–791. doi:10.​1002/​aic.​15107 CrossRef
63.
go back to reference Zhou X, Broadbelt L, Vinu R (2016d) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem KM (ed) Advances in chemical engineering. Elsevier, Cambridge, pp 96–198 Zhou X, Broadbelt L, Vinu R (2016d) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem KM (ed) Advances in chemical engineering. Elsevier, Cambridge, pp 96–198
66.
go back to reference Thimthong N, Appari S, Tanaka R, Iwanaga K, Kudo S, J-i H, Shoji T, Norinaga K (2015) Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry. Fuel Process Technol 134:159–167. doi:10.1016/j.fuproc.2015.01.029 CrossRef Thimthong N, Appari S, Tanaka R, Iwanaga K, Kudo S, J-i H, Shoji T, Norinaga K (2015) Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry. Fuel Process Technol 134:159–167. doi:10.​1016/​j.​fuproc.​2015.​01.​029 CrossRef
67.
go back to reference Yang H, Appari S, Kudo S, J-i H, Norinaga K (2015) Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin. Ind Eng Chem Res 54:6855–6864. doi:10.1021/acs.iecr.5b01289 CrossRef Yang H, Appari S, Kudo S, J-i H, Norinaga K (2015) Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin. Ind Eng Chem Res 54:6855–6864. doi:10.​1021/​acs.​iecr.​5b01289 CrossRef
68.
go back to reference Custodis VB, Hemberger P, Ma Z, van Bokhoven JA (2014) Mechanism of fast pyrolysis of lignin: studying model compounds. J Phys Chem B 118:8524–8531. doi:10.1021/jp5036579 CrossRef Custodis VB, Hemberger P, Ma Z, van Bokhoven JA (2014) Mechanism of fast pyrolysis of lignin: studying model compounds. J Phys Chem B 118:8524–8531. doi:10.​1021/​jp5036579 CrossRef
70.
go back to reference Calonaci M, Grana R, Barker Hemings E, Bozzano G, Dente M, Ranzi E (2010) Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuel 24:5727–5734. doi:10.1021/ef1008902 CrossRef Calonaci M, Grana R, Barker Hemings E, Bozzano G, Dente M, Ranzi E (2010) Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuel 24:5727–5734. doi:10.​1021/​ef1008902 CrossRef
71.
go back to reference Dupont C, Chen L, Cances J, Commandre J, Cuoci A, Pierucci S, Ranzi E (2009) Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J Anal Appl Pyrolysis 85:260–267. doi:10.1016/j.jaap.2008.11.034 CrossRef Dupont C, Chen L, Cances J, Commandre J, Cuoci A, Pierucci S, Ranzi E (2009) Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J Anal Appl Pyrolysis 85:260–267. doi:10.​1016/​j.​jaap.​2008.​11.​034 CrossRef
73.
go back to reference Mellin P, Kantarelis E, Zhou C, Yang W (2014) Simulation of bed dynamics and primary products from fast pyrolysis of biomass: steam compared to nitrogen as a fluidizing agent. Ind Eng Chem Res 53:12129–12142. doi:10.1021/ie501996v CrossRef Mellin P, Kantarelis E, Zhou C, Yang W (2014) Simulation of bed dynamics and primary products from fast pyrolysis of biomass: steam compared to nitrogen as a fluidizing agent. Ind Eng Chem Res 53:12129–12142. doi:10.​1021/​ie501996v CrossRef
74.
go back to reference Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T (2001) Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog Energy Combust Sci 27:99–139. doi:10.1016/S0360-1285(00)00013-7 CrossRef Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T (2001) Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog Energy Combust Sci 27:99–139. doi:10.​1016/​S0360-1285(00)00013-7 CrossRef
75.
76.
go back to reference Norinaga K, Shoji T, Kudo S, Hayashi J (2013) Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel 103:141–150. doi:10.1016/j.fuel.2011.07.045 CrossRef Norinaga K, Shoji T, Kudo S, Hayashi J (2013) Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel 103:141–150. doi:10.​1016/​j.​fuel.​2011.​07.​045 CrossRef
77.
go back to reference Norinaga K, Yang H, Tanaka R, Appari S, Iwanaga K, Takashima Y, Kudo S, Shoji T, Hayashi J (2014) A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking. Biomass Bioenergy 69:144–154. doi:10.1016/j.biombioe.2014.07.008 CrossRef Norinaga K, Yang H, Tanaka R, Appari S, Iwanaga K, Takashima Y, Kudo S, Shoji T, Hayashi J (2014) A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking. Biomass Bioenergy 69:144–154. doi:10.​1016/​j.​biombioe.​2014.​07.​008 CrossRef
78.
go back to reference Lifshitz A, Tamburu C, Shashua R (1998) Thermal decomposition of 2, 5-dimethylfuran. Experimental results and computer modeling. J Phys Chem A 102:10655–10670. doi:10.1021/jp982772b CrossRef Lifshitz A, Tamburu C, Shashua R (1998) Thermal decomposition of 2, 5-dimethylfuran. Experimental results and computer modeling. J Phys Chem A 102:10655–10670. doi:10.​1021/​jp982772b CrossRef
80.
go back to reference Richter H, Howard JB (2002) Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phy Chem Chem Phys 4:2038–2055. doi:10.1039/B110089K CrossRef Richter H, Howard JB (2002) Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phy Chem Chem Phys 4:2038–2055. doi:10.​1039/​B110089K CrossRef
81.
83.
go back to reference Van Geem KM, Reyniers MF, Marin GB, Song J, Green WH, Matheu DM (2006) Automatic reaction network generation using RMG for steam cracking of n-hexane. AICHE J 52:718–730. doi:10.1002/aic.10655 CrossRef Van Geem KM, Reyniers MF, Marin GB, Song J, Green WH, Matheu DM (2006) Automatic reaction network generation using RMG for steam cracking of n-hexane. AICHE J 52:718–730. doi:10.​1002/​aic.​10655 CrossRef
92.
go back to reference Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-Glucoside. A Theoretical Study of Plausible Reaction Mechanisms J Org Chem 74:6891–6894. doi:10.1021/jo900457k Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-Glucoside. A Theoretical Study of Plausible Reaction Mechanisms J Org Chem 74:6891–6894. doi:10.​1021/​jo900457k
93.
go back to reference Carstensen H-H, Dean AM (2010) Development of detailed kinetic models for the thermal conversion of biomass via first principle methods and rate estimation rules. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production. ACS, Oxford, pp 201–243CrossRef Carstensen H-H, Dean AM (2010) Development of detailed kinetic models for the thermal conversion of biomass via first principle methods and rate estimation rules. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production. ACS, Oxford, pp 201–243CrossRef
94.
go back to reference Seshadri V, Westmoreland PR (2012) Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J Phys Chem A 116:11997–12013. doi:10.1021/jp3085099 CrossRef Seshadri V, Westmoreland PR (2012) Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J Phys Chem A 116:11997–12013. doi:10.​1021/​jp3085099 CrossRef
95.
go back to reference Nimlos MR, Blanksby SJ, Ellison GB, Evans RJ (2003) Enhancement of 1,2-dehydration of alcohols by alkali cations and protons: a model for dehydration of carbohydrates. J Anal Appl Pyrolysis 66:3–27. doi:10.1016/S0165-2370(02)00103-1 CrossRef Nimlos MR, Blanksby SJ, Ellison GB, Evans RJ (2003) Enhancement of 1,2-dehydration of alcohols by alkali cations and protons: a model for dehydration of carbohydrates. J Anal Appl Pyrolysis 66:3–27. doi:10.​1016/​S0165-2370(02)00103-1 CrossRef
96.
go back to reference Mushrif SH, Vasudevan V, Krishnamurthy CB, Venkatesh B (2015) Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: a perspective. Chem Eng Sci 121:217–235. doi:10.1016/j.ces.2014.08.019 CrossRef Mushrif SH, Vasudevan V, Krishnamurthy CB, Venkatesh B (2015) Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: a perspective. Chem Eng Sci 121:217–235. doi:10.​1016/​j.​ces.​2014.​08.​019 CrossRef
98.
go back to reference Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894. doi:10.1039/TF9353100875 CrossRef Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894. doi:10.​1039/​TF9353100875 CrossRef
101.
go back to reference Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ (2012c) The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem 14:1284–1288. doi:10.1039/c2gc35184f CrossRef Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ (2012c) The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem 14:1284–1288. doi:10.​1039/​c2gc35184f CrossRef
102.
103.
104.
go back to reference Westerhof R, Oudenhoven S, Marathe P, Engelen M, Garcia-Perez M, Wang Z, Kersten S (2016) The interplay between chemistry and heat/mass transfer during the fast pyrolysis of cellulose. React Chem Eng 1:555–566. doi:10.1039/c6re00100a CrossRef Westerhof R, Oudenhoven S, Marathe P, Engelen M, Garcia-Perez M, Wang Z, Kersten S (2016) The interplay between chemistry and heat/mass transfer during the fast pyrolysis of cellulose. React Chem Eng 1:555–566. doi:10.​1039/​c6re00100a CrossRef
108.
go back to reference Gonzalez Quiroga A, Carstensen H-H, Van Geem KM, Marin GB (2016) Design of a gas-solid vortex reactor demonstration unit for the fast pyrolysis of lignocellulosic biomass. in: 21st International Symposium on Analytical and Applied Pyrolysis (PYRO 2016), Nancy, pp. 181–181 Gonzalez Quiroga A, Carstensen H-H, Van Geem KM, Marin GB (2016) Design of a gas-solid vortex reactor demonstration unit for the fast pyrolysis of lignocellulosic biomass. in: 21st International Symposium on Analytical and Applied Pyrolysis (PYRO 2016), Nancy, pp. 181–181
109.
110.
113.
go back to reference Negahdar L, Gonzalez-Quiroga A, Otyuskaya D, Toraman HE, Liu L, Jastrzebski JTBH, Van Geem KM, Marin GB, Thybaut JW, Weckhuysen BM (2016) Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC× GC. ACS Sustain Chem Eng 4:4974–4985. doi:10.1021/acssuschemeng.6b01329 CrossRef Negahdar L, Gonzalez-Quiroga A, Otyuskaya D, Toraman HE, Liu L, Jastrzebski JTBH, Van Geem KM, Marin GB, Thybaut JW, Weckhuysen BM (2016) Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC× GC. ACS Sustain Chem Eng 4:4974–4985. doi:10.​1021/​acssuschemeng.​6b01329 CrossRef
114.
go back to reference Michailof CM, Kalogiannis KG, Sfetsas T, Patiaka DT, Lappas AA (2016) Advanced analytical techniques for bio-oil characterization. Wiley Interdiscip Rev: Energy Environ doi. doi:10.1002/wene.208 Michailof CM, Kalogiannis KG, Sfetsas T, Patiaka DT, Lappas AA (2016) Advanced analytical techniques for bio-oil characterization. Wiley Interdiscip Rev: Energy Environ doi. doi:10.​1002/​wene.​208
115.
go back to reference Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, Caramão EB, Dugo P, Mondello L (2014) Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal Chem 86:11255–11262. doi:10.1021/ac5038957 CrossRef Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, Caramão EB, Dugo P, Mondello L (2014) Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal Chem 86:11255–11262. doi:10.​1021/​ac5038957 CrossRef
117.
go back to reference Gjersing E, Happs RM, Sykes RW, Doeppke C, Davis MF (2013) Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 110:721–728. doi:10.1002/bit.24741 CrossRef Gjersing E, Happs RM, Sykes RW, Doeppke C, Davis MF (2013) Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 110:721–728. doi:10.​1002/​bit.​24741 CrossRef
118.
go back to reference Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. doi:10.1016/j.biombioe.2010.08.067 CrossRef Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. doi:10.​1016/​j.​biombioe.​2010.​08.​067 CrossRef
119.
go back to reference Yoo C, Ragauskas AJ (2016) Analysis of biomass, today and tomorrow. Ann Chromatogr Sep Tech 2:1–2 Yoo C, Ragauskas AJ (2016) Analysis of biomass, today and tomorrow. Ann Chromatogr Sep Tech 2:1–2
123.
go back to reference Constant S, Wienk HL, Frissen AE, de Peinder P, Boelens R, van Es DS, Grisel RJ, Weckhuysen BM, Huijgen WJ, Gosselink RJ (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18:2651–2665. doi:10.1039/c5gc03043a CrossRef Constant S, Wienk HL, Frissen AE, de Peinder P, Boelens R, van Es DS, Grisel RJ, Weckhuysen BM, Huijgen WJ, Gosselink RJ (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18:2651–2665. doi:10.​1039/​c5gc03043a CrossRef
125.
go back to reference Kline LM, Labbé N, Boyer C, Yu TE, English BC, Larson JA (2016) Investigating the impact of biomass quality on near-infrared models for switchgrass feedstocks. Bioengineering 3:1–22. doi:10.3934/bioeng.2016.1.1 Kline LM, Labbé N, Boyer C, Yu TE, English BC, Larson JA (2016) Investigating the impact of biomass quality on near-infrared models for switchgrass feedstocks. Bioengineering 3:1–22. doi:10.​3934/​bioeng.​2016.​1.​1
126.
go back to reference Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014a) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7:1. doi:10.1186/1754-6834-7-93 CrossRef Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014a) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7:1. doi:10.​1186/​1754-6834-7-93 CrossRef
127.
go back to reference Lupoi JS, Singh S, Simmons BA, Henry RJ (2014b) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. BioEnergy Res 7:1–23. doi:10.1007/s12155-013-9352-1 CrossRef Lupoi JS, Singh S, Simmons BA, Henry RJ (2014b) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. BioEnergy Res 7:1–23. doi:10.​1007/​s12155-013-9352-1 CrossRef
128.
go back to reference Lupoi JS (2015) Analytical methods for lignocellulosic biomass structural polysaccharides. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides. Springer, Basel, pp 1121–1180CrossRef Lupoi JS (2015) Analytical methods for lignocellulosic biomass structural polysaccharides. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides. Springer, Basel, pp 1121–1180CrossRef
129.
131.
134.
go back to reference Ono Y, Tanaka R, Funahashi R, Takeuchi M, Saito T, Isogai A (2016) SEC–MALLS analysis of ethylenediamine-pretreated native celluloses in LiCl/N,N-dimethylacetamide: softwood kraft pulp and highly crystalline bacterial, tunicate, and algal celluloses. Cellulose 23:1639–1647. doi:10.1007/s10570-016-0948-4 CrossRef Ono Y, Tanaka R, Funahashi R, Takeuchi M, Saito T, Isogai A (2016) SEC–MALLS analysis of ethylenediamine-pretreated native celluloses in LiCl/N,N-dimethylacetamide: softwood kraft pulp and highly crystalline bacterial, tunicate, and algal celluloses. Cellulose 23:1639–1647. doi:10.​1007/​s10570-016-0948-4 CrossRef
135.
go back to reference Teixeira AR, Gantt R, Joseph KE, Maduskar S, Paulsen AD, Krumm C, Zhu C, Dauenhauer PJ (2016) Spontaneous aerosol ejection: origin of inorganic particles in biomass pyrolysis. ChemSusChem 9:1322–1328. doi:10.1002/cssc.201600112 CrossRef Teixeira AR, Gantt R, Joseph KE, Maduskar S, Paulsen AD, Krumm C, Zhu C, Dauenhauer PJ (2016) Spontaneous aerosol ejection: origin of inorganic particles in biomass pyrolysis. ChemSusChem 9:1322–1328. doi:10.​1002/​cssc.​201600112 CrossRef
136.
go back to reference Proano-Aviles J, Lindstrom JK, Johnston PA, Brown RC (2016) Heat and mass transfer effects in a furnace-based micropyrolyzer. Energy Technol doi. doi:10.1002/ente.201600279 Proano-Aviles J, Lindstrom JK, Johnston PA, Brown RC (2016) Heat and mass transfer effects in a furnace-based micropyrolyzer. Energy Technol doi. doi:10.​1002/​ente.​201600279
Metadata
Title
Towards first-principles based kinetic modeling of biomass fast pyrolysis
Authors
Arturo Gonzalez-Quiroga
Kevin M. Van Geem
Guy B. Marin
Publication date
06-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2017
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0251-0

Other articles of this Issue 3/2017

Biomass Conversion and Biorefinery 3/2017 Go to the issue