Skip to main content
Top
Published in: Journal of Materials Science 12/2018

05-03-2018 | Chemical routes to materials

Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency

Authors: P. H. Linh, N. V. Chien, D. D. Dung, P. H. Nam, D. T. Hoa, N. T. N. Anh, L. V. Hong, N. X. Phuc, P. T. Phong

Published in: Journal of Materials Science | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we developed a polymer encapsulation of Fe3O4 nanoparticles as a core–shell nanocluster with different sizes to investigate the cluster structure effect on their magnetic properties and magnetic heating behavior. Well-dispersed nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles were synthesized by microwave-assisted co-precipitation. The cluster sizes were tunable by varying the concentration of polymers used during synthesis. Nanoclusters present superparamagnetic behavior at room temperature with a reduction in saturation magnetization as a consequence of coating layer. The shift of blocking temperature to the higher value with increasing clusters size shows the stronger magnetic interaction in larger magnetic clusters. In a low alternating magnetic field with frequency of 178 Hz and amplitude of 103 Oe, nanoclusters offer a high heating efficiency. A maximum specific absorption rate of 204 W/g is observed in the sample with hydrodynamic size of 53 nm. In vitro cytotoxicity analysis performed on HeLa cells verified that nanoclusters show a good biocompatibility and can be an excellent candidate for applications in hyperthermia cancer treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef
2.
go back to reference Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef
3.
go back to reference Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRef Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRef
4.
go back to reference Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49–L52CrossRef Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49–L52CrossRef
5.
go back to reference Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Cho CH, Jordan A, Wust P, Loening SA (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:131CrossRef Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Cho CH, Jordan A, Wust P, Loening SA (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:131CrossRef
6.
go back to reference Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef
7.
go back to reference Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef
8.
go back to reference Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Ménager C (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949CrossRef Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Ménager C (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949CrossRef
9.
go back to reference Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviours of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732CrossRef Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviours of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732CrossRef
10.
go back to reference Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales M, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales M, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef
11.
go back to reference Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRef Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRef
12.
go back to reference Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef
13.
go back to reference Kumar CSSR, Mohammad F (2011) Magnetic nano materials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef Kumar CSSR, Mohammad F (2011) Magnetic nano materials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef
14.
go back to reference Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef
15.
go back to reference Soares PIP, Machado D, Laia C, Pereira LCJ, Joana TC, Ferreira IMM, Novo CMM, Paulo J (2016) Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydr Polym 149:382–390CrossRef Soares PIP, Machado D, Laia C, Pereira LCJ, Joana TC, Ferreira IMM, Novo CMM, Paulo J (2016) Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydr Polym 149:382–390CrossRef
16.
go back to reference Zamora-Moraa V, Fernández-Gutiérreza M, González-Gómeza Á, Sanzc B, Romána JS, Goyac GF, Hernándeza R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370CrossRef Zamora-Moraa V, Fernández-Gutiérreza M, González-Gómeza Á, Sanzc B, Romána JS, Goyac GF, Hernándeza R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370CrossRef
17.
go back to reference Zhu A, Yuan L, Dai S (2008) Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. J Phys Chem C 112:5432–5438CrossRef Zhu A, Yuan L, Dai S (2008) Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. J Phys Chem C 112:5432–5438CrossRef
18.
go back to reference Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5(17):8056–8066CrossRef Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5(17):8056–8066CrossRef
19.
go back to reference Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, He Z, Wang Y (2014) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9:146–157CrossRef Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, He Z, Wang Y (2014) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9:146–157CrossRef
20.
go back to reference Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef
21.
go back to reference Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Frederik JCD, Wurm R, Sousa CP, Correia AN, Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite nanocomposite as a modified electrode sensor. Carbohydr Polym 151:760–769CrossRef Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Frederik JCD, Wurm R, Sousa CP, Correia AN, Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite nanocomposite as a modified electrode sensor. Carbohydr Polym 151:760–769CrossRef
22.
go back to reference Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65(1–2):271–281CrossRef Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65(1–2):271–281CrossRef
23.
go back to reference Oluwasina OO, Olagboye AS, Boboye A, Hassan FG (2017) Carboxymethyl chitosan zinc supplement: preparation, physicochemical, and preliminary antimicrobial analysis. Cogent Chemistry 3:1294470–1294482CrossRef Oluwasina OO, Olagboye AS, Boboye A, Hassan FG (2017) Carboxymethyl chitosan zinc supplement: preparation, physicochemical, and preliminary antimicrobial analysis. Cogent Chemistry 3:1294470–1294482CrossRef
24.
go back to reference Thirumavalavan M, Huang K-L, Lee J-F (2013) Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9):4198–4212CrossRef Thirumavalavan M, Huang K-L, Lee J-F (2013) Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9):4198–4212CrossRef
25.
go back to reference Wang H-D, Yang Q, Niu CH (2010) Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diam Relat Mater 19:441–444CrossRef Wang H-D, Yang Q, Niu CH (2010) Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diam Relat Mater 19:441–444CrossRef
26.
go back to reference Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93CrossRef Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93CrossRef
27.
go back to reference He G, Chen X, Yin Y, Cai W, Ke W, Kong Y, Zheng H (2016) Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed 27(4):370–384CrossRef He G, Chen X, Yin Y, Cai W, Ke W, Kong Y, Zheng H (2016) Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed 27(4):370–384CrossRef
28.
go back to reference Britto DD, Campana-Filho SP (2004) A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 84:353–361CrossRef Britto DD, Campana-Filho SP (2004) A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 84:353–361CrossRef
29.
go back to reference Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef
30.
go back to reference Bruvera IJ, Mendoza ZP, Calatayud MP, Goya GF, Sánchez FH (2015) Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J Appl Phys 118:184304–184311CrossRef Bruvera IJ, Mendoza ZP, Calatayud MP, Goya GF, Sánchez FH (2015) Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J Appl Phys 118:184304–184311CrossRef
31.
go back to reference Kechrakos D, Trohidou KN (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62:3941–3951CrossRef Kechrakos D, Trohidou KN (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62:3941–3951CrossRef
32.
go back to reference Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184422–184428CrossRef Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184422–184428CrossRef
33.
go back to reference Raap MBFV, Coral DF, Yu S, Muñoz GA, Sánchez FH, Roig A (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Phys Chem Chem Phys 19:7176–7187CrossRef Raap MBFV, Coral DF, Yu S, Muñoz GA, Sánchez FH, Roig A (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Phys Chem Chem Phys 19:7176–7187CrossRef
34.
go back to reference Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420–144432CrossRef Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420–144432CrossRef
35.
go back to reference Liu Z, Bai H, Sun DD (2011) Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem 35:137–140CrossRef Liu Z, Bai H, Sun DD (2011) Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem 35:137–140CrossRef
36.
go back to reference Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 5(3):141–150CrossRef Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 5(3):141–150CrossRef
37.
go back to reference Guardia PL, Labarta A, Batlle X (2011) Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 15:390–396CrossRef Guardia PL, Labarta A, Batlle X (2011) Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 15:390–396CrossRef
38.
go back to reference Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef
39.
go back to reference Zélis PM, Muraca D, González JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15:1613–1625CrossRef Zélis PM, Muraca D, González JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15:1613–1625CrossRef
40.
go back to reference Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Fana DD, Ding J (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Fana DD, Ding J (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef
41.
go back to reference Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of Spatial Confinement on Magnetic Hyperthermia via Dipolar Interactions in Fe3O4 Nanoparticles for Biomedical Applications. Mater Sci Eng C Mater Biol Appl 42:52–63CrossRef Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of Spatial Confinement on Magnetic Hyperthermia via Dipolar Interactions in Fe3O4 Nanoparticles for Biomedical Applications. Mater Sci Eng C Mater Biol Appl 42:52–63CrossRef
42.
go back to reference Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916–4922CrossRef Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916–4922CrossRef
43.
go back to reference Gawali SL, Barick BK, Barick KC, Hassan PA (2017) Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J Alloys Compd 725:800–806CrossRef Gawali SL, Barick BK, Barick KC, Hassan PA (2017) Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J Alloys Compd 725:800–806CrossRef
44.
go back to reference Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef
45.
go back to reference Hauser AK, Mathias R, Anderson KW, Hilt JZ (2015) The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 160:177–186CrossRef Hauser AK, Mathias R, Anderson KW, Hilt JZ (2015) The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 160:177–186CrossRef
46.
go back to reference Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709CrossRef Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709CrossRef
Metadata
Title
Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency
Authors
P. H. Linh
N. V. Chien
D. D. Dung
P. H. Nam
D. T. Hoa
N. T. N. Anh
L. V. Hong
N. X. Phuc
P. T. Phong
Publication date
05-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2180-0

Other articles of this Issue 12/2018

Journal of Materials Science 12/2018 Go to the issue

Premium Partners