Skip to main content
Top
Published in: Rare Metals 6/2019

22-05-2019

Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility

Authors: Dian-Geng Cai, Mian-Mian Bao, Xiao-Yan Wang, Lei Yang, Gao-Wu Qin, Ren-Xian Wang, Da-Fu Chen, Er-Lin Zhang

Published in: Rare Metals | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S. aureus and E. coli and thus has potential application as dental materials and orthopedic application. In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti (commercially pure titanium) by electrochemical technology and immersion experiment. Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cp-Ti. Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5 solutions. Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy. The corroded surface morphology was observed by scanning electron microscopy (SEM), and the roughness was tested in the end. The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4(5):445.CrossRef Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4(5):445.CrossRef
[2]
go back to reference Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C-Biomim Supramol Syst. 2006;26(8):1269.CrossRef Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C-Biomim Supramol Syst. 2006;26(8):1269.CrossRef
[3]
go back to reference Wilches LV, Uribe JA, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear. 2008;265(1–2):143.CrossRef Wilches LV, Uribe JA, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear. 2008;265(1–2):143.CrossRef
[4]
go back to reference Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46.CrossRef Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46.CrossRef
[5]
go back to reference Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52(3):839.CrossRef Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52(3):839.CrossRef
[6]
go back to reference Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corrosion Sci. 2011;53(3):992.CrossRef Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corrosion Sci. 2011;53(3):992.CrossRef
[7]
go back to reference Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86(2–3):320.CrossRef Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86(2–3):320.CrossRef
[8]
go back to reference Pulikkottil VJ, Chidambaram S, Bejoy P, Femin P, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci. 2016;8(S1):S96. Pulikkottil VJ, Chidambaram S, Bejoy P, Femin P, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci. 2016;8(S1):S96.
[9]
go back to reference Nakagawa M, Matsuya S, Koich U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305.CrossRef Nakagawa M, Matsuya S, Koich U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305.CrossRef
[10]
go back to reference Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24(2):275.CrossRef Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24(2):275.CrossRef
[11]
go back to reference Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59.CrossRef Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59.CrossRef
[12]
go back to reference Souza J, Barbosa S, Ariza E, Celis JP, Rocha L. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82.CrossRef Souza J, Barbosa S, Ariza E, Celis JP, Rocha L. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82.CrossRef
[13]
go back to reference Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.CrossRef Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.CrossRef
[14]
go back to reference Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.CrossRef Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.CrossRef
[15]
go back to reference Zhang E, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.CrossRef Zhang E, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.CrossRef
[16]
go back to reference Zhang E, Ren J, Li S, Yang L, Qin G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed Mater. 2016;11(6):065001.CrossRef Zhang E, Ren J, Li S, Yang L, Qin G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed Mater. 2016;11(6):065001.CrossRef
[17]
go back to reference Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.CrossRef Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.CrossRef
[18]
go back to reference Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.CrossRef Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.CrossRef
[19]
go back to reference Chern Lin JH, Moser JB, Taira M, Greener EH. Cu–Ti, Co–Ti and Ni–Ti systems: corrosion and microhardness. J Oral Rehabil. 1990;17(4):383.CrossRef Chern Lin JH, Moser JB, Taira M, Greener EH. Cu–Ti, Co–Ti and Ni–Ti systems: corrosion and microhardness. J Oral Rehabil. 1990;17(4):383.CrossRef
[20]
go back to reference Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C-Mater Biolog Appl. 2014;35:392.CrossRef Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C-Mater Biolog Appl. 2014;35:392.CrossRef
[21]
go back to reference Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Mater. 1989;5(1):45.CrossRef Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Mater. 1989;5(1):45.CrossRef
[22]
go back to reference Bai B, Zhang E, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci-Mater Med. 2015;26(12):265.CrossRef Bai B, Zhang E, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci-Mater Med. 2015;26(12):265.CrossRef
[23]
go back to reference Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang E. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):25013.CrossRef Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang E. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):25013.CrossRef
[24]
go back to reference Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.CrossRef Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.CrossRef
[25]
go back to reference Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.CrossRef Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.CrossRef
[26]
go back to reference Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti–Cu alloys. Biomaterials. 2003;24(20):3377.CrossRef Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti–Cu alloys. Biomaterials. 2003;24(20):3377.CrossRef
[27]
go back to reference Kikuchi M, Takahashi M, Okabe T, Okuno O. Grindability of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2003;22(2):191.CrossRef Kikuchi M, Takahashi M, Okabe T, Okuno O. Grindability of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2003;22(2):191.CrossRef
[28]
go back to reference Hattori M, Kaku S, Hasegawa K, Kawada E, Oda Y, Okabe T. Casting accuracy of experimental Ti–Cu alloys. J Dent Res. 2000;79:416. Hattori M, Kaku S, Hasegawa K, Kawada E, Oda Y, Okabe T. Casting accuracy of experimental Ti–Cu alloys. J Dent Res. 2000;79:416.
[29]
go back to reference Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng, C. 2013;33(3):1125.CrossRef Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng, C. 2013;33(3):1125.CrossRef
[30]
go back to reference Bao M, Liu Y, Wang X, Yang L, Li S, Ren J, Li S, Yang L, Qin G, Zhang E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.CrossRef Bao M, Liu Y, Wang X, Yang L, Li S, Ren J, Li S, Yang L, Qin G, Zhang E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.CrossRef
[31]
go back to reference Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91.CrossRef Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91.CrossRef
[32]
go back to reference Tomashov N, Altovsky R, Chernova G. Passivity and corrosion resistance of titanium and its alloys. J Electrochem Soc. 1961;108(2):113.CrossRef Tomashov N, Altovsky R, Chernova G. Passivity and corrosion resistance of titanium and its alloys. J Electrochem Soc. 1961;108(2):113.CrossRef
[33]
go back to reference Hickman J, Gulbransen E. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal Chem. 1948;20(2):158.CrossRef Hickman J, Gulbransen E. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal Chem. 1948;20(2):158.CrossRef
[34]
go back to reference Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468.CrossRef Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468.CrossRef
[35]
go back to reference Morcillo M, Diaz I, Chico B, Cano H, de la Fuente D. Weathering steels: from empirical development to scientific design. A review. Corros Sci. 2014;83:6.CrossRef Morcillo M, Diaz I, Chico B, Cano H, de la Fuente D. Weathering steels: from empirical development to scientific design. A review. Corros Sci. 2014;83:6.CrossRef
[36]
go back to reference Sun Q, Yu Z, Zhu R. Dynamic fracture toughness of Ti–2.5Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater Sci Eng, A. 2008;483:131.CrossRef Sun Q, Yu Z, Zhu R. Dynamic fracture toughness of Ti–2.5Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater Sci Eng, A. 2008;483:131.CrossRef
[37]
go back to reference Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.CrossRef Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.CrossRef
[38]
go back to reference Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.CrossRef Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.CrossRef
[39]
go back to reference Davis JR. Copper and Copper Alloys. Cleveland: ASM International; 2001. 13. Davis JR. Copper and Copper Alloys. Cleveland: ASM International; 2001. 13.
[40]
go back to reference Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef
[41]
go back to reference Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242.CrossRef Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242.CrossRef
[42]
go back to reference Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319.CrossRef Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319.CrossRef
[43]
go back to reference Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevice. 2012;14(4):709.CrossRef Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevice. 2012;14(4):709.CrossRef
[44]
go back to reference Bennett MR, Anglin S, Mcewan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Investig. 1994;93(2):820.CrossRef Bennett MR, Anglin S, Mcewan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Investig. 1994;93(2):820.CrossRef
[45]
go back to reference Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef
[46]
go back to reference Zhang E, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.CrossRef Zhang E, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.CrossRef
Metadata
Title
Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility
Authors
Dian-Geng Cai
Mian-Mian Bao
Xiao-Yan Wang
Lei Yang
Gao-Wu Qin
Ren-Xian Wang
Da-Fu Chen
Er-Lin Zhang
Publication date
22-05-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2019
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01202-9

Other articles of this Issue 6/2019

Rare Metals 6/2019 Go to the issue

Premium Partners