Skip to main content
Erschienen in: Rare Metals 6/2019

22.05.2019

Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility

verfasst von: Dian-Geng Cai, Mian-Mian Bao, Xiao-Yan Wang, Lei Yang, Gao-Wu Qin, Ren-Xian Wang, Da-Fu Chen, Er-Lin Zhang

Erschienen in: Rare Metals | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S. aureus and E. coli and thus has potential application as dental materials and orthopedic application. In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti (commercially pure titanium) by electrochemical technology and immersion experiment. Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cp-Ti. Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5 solutions. Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy. The corroded surface morphology was observed by scanning electron microscopy (SEM), and the roughness was tested in the end. The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4(5):445.CrossRef Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4(5):445.CrossRef
[2]
Zurück zum Zitat Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C-Biomim Supramol Syst. 2006;26(8):1269.CrossRef Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C-Biomim Supramol Syst. 2006;26(8):1269.CrossRef
[3]
Zurück zum Zitat Wilches LV, Uribe JA, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear. 2008;265(1–2):143.CrossRef Wilches LV, Uribe JA, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear. 2008;265(1–2):143.CrossRef
[4]
Zurück zum Zitat Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46.CrossRef Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46.CrossRef
[5]
Zurück zum Zitat Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52(3):839.CrossRef Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52(3):839.CrossRef
[6]
Zurück zum Zitat Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corrosion Sci. 2011;53(3):992.CrossRef Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corrosion Sci. 2011;53(3):992.CrossRef
[7]
Zurück zum Zitat Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86(2–3):320.CrossRef Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86(2–3):320.CrossRef
[8]
Zurück zum Zitat Pulikkottil VJ, Chidambaram S, Bejoy P, Femin P, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci. 2016;8(S1):S96. Pulikkottil VJ, Chidambaram S, Bejoy P, Femin P, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci. 2016;8(S1):S96.
[9]
Zurück zum Zitat Nakagawa M, Matsuya S, Koich U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305.CrossRef Nakagawa M, Matsuya S, Koich U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305.CrossRef
[10]
Zurück zum Zitat Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24(2):275.CrossRef Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24(2):275.CrossRef
[11]
Zurück zum Zitat Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59.CrossRef Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59.CrossRef
[12]
Zurück zum Zitat Souza J, Barbosa S, Ariza E, Celis JP, Rocha L. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82.CrossRef Souza J, Barbosa S, Ariza E, Celis JP, Rocha L. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82.CrossRef
[13]
Zurück zum Zitat Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.CrossRef Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.CrossRef
[14]
Zurück zum Zitat Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.CrossRef Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.CrossRef
[15]
Zurück zum Zitat Zhang E, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.CrossRef Zhang E, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.CrossRef
[16]
Zurück zum Zitat Zhang E, Ren J, Li S, Yang L, Qin G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed Mater. 2016;11(6):065001.CrossRef Zhang E, Ren J, Li S, Yang L, Qin G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed Mater. 2016;11(6):065001.CrossRef
[17]
Zurück zum Zitat Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.CrossRef Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.CrossRef
[18]
Zurück zum Zitat Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.CrossRef Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.CrossRef
[19]
Zurück zum Zitat Chern Lin JH, Moser JB, Taira M, Greener EH. Cu–Ti, Co–Ti and Ni–Ti systems: corrosion and microhardness. J Oral Rehabil. 1990;17(4):383.CrossRef Chern Lin JH, Moser JB, Taira M, Greener EH. Cu–Ti, Co–Ti and Ni–Ti systems: corrosion and microhardness. J Oral Rehabil. 1990;17(4):383.CrossRef
[20]
Zurück zum Zitat Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C-Mater Biolog Appl. 2014;35:392.CrossRef Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C-Mater Biolog Appl. 2014;35:392.CrossRef
[21]
Zurück zum Zitat Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Mater. 1989;5(1):45.CrossRef Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Mater. 1989;5(1):45.CrossRef
[22]
Zurück zum Zitat Bai B, Zhang E, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci-Mater Med. 2015;26(12):265.CrossRef Bai B, Zhang E, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci-Mater Med. 2015;26(12):265.CrossRef
[23]
Zurück zum Zitat Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang E. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):25013.CrossRef Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang E. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):25013.CrossRef
[24]
Zurück zum Zitat Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.CrossRef Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.CrossRef
[25]
Zurück zum Zitat Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.CrossRef Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.CrossRef
[26]
Zurück zum Zitat Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti–Cu alloys. Biomaterials. 2003;24(20):3377.CrossRef Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti–Cu alloys. Biomaterials. 2003;24(20):3377.CrossRef
[27]
Zurück zum Zitat Kikuchi M, Takahashi M, Okabe T, Okuno O. Grindability of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2003;22(2):191.CrossRef Kikuchi M, Takahashi M, Okabe T, Okuno O. Grindability of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2003;22(2):191.CrossRef
[28]
Zurück zum Zitat Hattori M, Kaku S, Hasegawa K, Kawada E, Oda Y, Okabe T. Casting accuracy of experimental Ti–Cu alloys. J Dent Res. 2000;79:416. Hattori M, Kaku S, Hasegawa K, Kawada E, Oda Y, Okabe T. Casting accuracy of experimental Ti–Cu alloys. J Dent Res. 2000;79:416.
[29]
Zurück zum Zitat Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng, C. 2013;33(3):1125.CrossRef Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng, C. 2013;33(3):1125.CrossRef
[30]
Zurück zum Zitat Bao M, Liu Y, Wang X, Yang L, Li S, Ren J, Li S, Yang L, Qin G, Zhang E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.CrossRef Bao M, Liu Y, Wang X, Yang L, Li S, Ren J, Li S, Yang L, Qin G, Zhang E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.CrossRef
[31]
Zurück zum Zitat Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91.CrossRef Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91.CrossRef
[32]
Zurück zum Zitat Tomashov N, Altovsky R, Chernova G. Passivity and corrosion resistance of titanium and its alloys. J Electrochem Soc. 1961;108(2):113.CrossRef Tomashov N, Altovsky R, Chernova G. Passivity and corrosion resistance of titanium and its alloys. J Electrochem Soc. 1961;108(2):113.CrossRef
[33]
Zurück zum Zitat Hickman J, Gulbransen E. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal Chem. 1948;20(2):158.CrossRef Hickman J, Gulbransen E. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal Chem. 1948;20(2):158.CrossRef
[34]
Zurück zum Zitat Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468.CrossRef Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468.CrossRef
[35]
Zurück zum Zitat Morcillo M, Diaz I, Chico B, Cano H, de la Fuente D. Weathering steels: from empirical development to scientific design. A review. Corros Sci. 2014;83:6.CrossRef Morcillo M, Diaz I, Chico B, Cano H, de la Fuente D. Weathering steels: from empirical development to scientific design. A review. Corros Sci. 2014;83:6.CrossRef
[36]
Zurück zum Zitat Sun Q, Yu Z, Zhu R. Dynamic fracture toughness of Ti–2.5Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater Sci Eng, A. 2008;483:131.CrossRef Sun Q, Yu Z, Zhu R. Dynamic fracture toughness of Ti–2.5Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater Sci Eng, A. 2008;483:131.CrossRef
[37]
Zurück zum Zitat Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.CrossRef Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.CrossRef
[38]
Zurück zum Zitat Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.CrossRef Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.CrossRef
[39]
Zurück zum Zitat Davis JR. Copper and Copper Alloys. Cleveland: ASM International; 2001. 13. Davis JR. Copper and Copper Alloys. Cleveland: ASM International; 2001. 13.
[40]
Zurück zum Zitat Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef
[41]
Zurück zum Zitat Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242.CrossRef Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242.CrossRef
[42]
Zurück zum Zitat Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319.CrossRef Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319.CrossRef
[43]
Zurück zum Zitat Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevice. 2012;14(4):709.CrossRef Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevice. 2012;14(4):709.CrossRef
[44]
Zurück zum Zitat Bennett MR, Anglin S, Mcewan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Investig. 1994;93(2):820.CrossRef Bennett MR, Anglin S, Mcewan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Investig. 1994;93(2):820.CrossRef
[45]
Zurück zum Zitat Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef
[46]
Zurück zum Zitat Zhang E, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.CrossRef Zhang E, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.CrossRef
Metadaten
Titel
Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility
verfasst von
Dian-Geng Cai
Mian-Mian Bao
Xiao-Yan Wang
Lei Yang
Gao-Wu Qin
Ren-Xian Wang
Da-Fu Chen
Er-Lin Zhang
Publikationsdatum
22.05.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01202-9

Weitere Artikel der Ausgabe 6/2019

Rare Metals 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.