Skip to main content
Top

2022 | OriginalPaper | Chapter

7. Biofuel Combustion Generated Particles Analysis

Authors : Farzad Jaliliantabar, Abdul Adam Abdullah, Paolo Carlucci, Sudhakar Kumarasamy

Published in: Application of Clean Fuels in Combustion Engines

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soot emission or carbon black is considered as a major challenge recently. Generally, internal combustion engines have been introduced as the main source of these materials specially in urban areas. Different methods are proposed to control soot emission of diesel engine such as DPF (Diesel Particulate Filter) which is attached to the engine exhaust line and the microstructure and size of NPs were introduced as important parameters on its efficiency. In addition, biodiesel has become widely accepted as an appropriate substitution for diesel fuel, however, the using of biodiesel fuel may change the structural characteristics of soot emission. It is observed that biofuel has higher soot oxidative reactivity, and it is more reactive than diesel fuel, which is an advantage for DPF regeneration. Smaller size of particles in biodiesel fuel soot compared to diesel fuel is mentioned as a reason for this phenomenon. For instance, it is reported that the fractal dimension of micro algae, cotton seed, waste cooking oil, eucalyptus oil, tea tree oil and diesel fuel is 2.02, 1.97, 1.85, 1.75, 1.80, 1.73, 1.69 (nm) respectively. Filtration efficiency which is a crucial characteristic of the DPFs for biodiesel fuel and diesel fuel was found to be much different. These differences are attributed to the morphology of the produced soot of the fuel burning. The source of the biodiesel fuel is introduced as an impactful parameter on engine NPs morphology and size. For example, the primary diameter of the soot emission from the above fuels is 20.1, 14.8, 14.8, 15.5, 14.5, 15, 17.5 and 20.75 nm, respectively. The result of these study reveals that structure and morphology of soot emission come from biofuel combustion is different from diesel fuel and these properties should be investigated for any unique biofuel resource individually. However, the smaller size of the biofuel combustion generated soot is an advantage of these fuels to enhance their oxidation reactivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baldelli A, Trivanovic U, Sipkens TA, Rogak SN (2020) On determining soot maturity: a review of the role of microscopy-and spectroscopy-based techniques. Chemosphere 252:126532 Baldelli A, Trivanovic U, Sipkens TA, Rogak SN (2020) On determining soot maturity: a review of the role of microscopy-and spectroscopy-based techniques. Chemosphere 252:126532
go back to reference Niranjan R, Thakur AK (2017) The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front Immunol 8:763CrossRef Niranjan R, Thakur AK (2017) The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front Immunol 8:763CrossRef
Metadata
Title
Biofuel Combustion Generated Particles Analysis
Authors
Farzad Jaliliantabar
Abdul Adam Abdullah
Paolo Carlucci
Sudhakar Kumarasamy
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8751-8_7

Premium Partner