Skip to main content
Top
Published in: Journal of Materials Science 3/2015

01-02-2015 | Original Paper

Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate

Authors: Shaya Mahmoudian, Mat Uzir Wahit, A. F. Ismail, Harintharavimal Balakrishnan, Muhammad Imran

Published in: Journal of Materials Science | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Regenerated cellulose/montmorillonite (RC/MMT) nanocomposite fiber materials were prepared via wet spinning process using an environmentally friendly ionic liquid, 1-ethyl-3-methylimidazolium acetate. The nanocomposite fibers were characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, and tensile analysis. FT-IR analysis revealed the presence of cellulose II crystalline structure in RC/MMT nanocomposite fibers. Considerable improvements in thermal stability and char yield were observed in nanocomposite fibers compared to pure RC fibers. The T 20 values of RC fibers improved by 10 °C from 301.8 to 311.9 °C with the incorporation of 6 wt% of MMT. In addition, the tensile strength and Young’s modulus of RC fibers also improved by 23 and 70 %, respectively with 6 wt% MMT. XRD and SEM results depicted good dispersion of MMT along with enhanced interactions between MMT and cellulose matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH, GermanyCrossRef Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH, GermanyCrossRef
2.
go back to reference Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
4.
go back to reference Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRef Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRef
5.
go back to reference Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color Relat Top 35:59–75CrossRef Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color Relat Top 35:59–75CrossRef
6.
go back to reference Woodings C (2002) Cellulose fibers, regenerated. Encyclopedia of polymer science and technology. Wiley, Warwickshire, pp 532–569 Woodings C (2002) Cellulose fibers, regenerated. Encyclopedia of polymer science and technology. Wiley, Warwickshire, pp 532–569
7.
go back to reference Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
8.
go back to reference Rogers RD, Seddon KR (2003) Chemistry: ionic liquids–solvents of the future? Science 302:792–793CrossRef Rogers RD, Seddon KR (2003) Chemistry: ionic liquids–solvents of the future? Science 302:792–793CrossRef
9.
go back to reference Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRef Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRef
10.
go back to reference Olivier-Bourbigou H, Magna L, Morvan D (2009) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef Olivier-Bourbigou H, Magna L, Morvan D (2009) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef
11.
go back to reference El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef
12.
go back to reference Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fibers Int 56:342–344 Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fibers Int 56:342–344
13.
go back to reference Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRef
14.
go back to reference Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27CrossRef Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27CrossRef
15.
go back to reference Du H, Qian X (2011) The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids. Carbohydr Res 346:1985–1990CrossRef Du H, Qian X (2011) The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids. Carbohydr Res 346:1985–1990CrossRef
16.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63CrossRef
17.
go back to reference Sinha RayS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Sinha RayS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
18.
go back to reference Zanetti M (2006) Flammability and thermal stability of polymer/layered silicate nanocomposites. In: Mai YW, Yu ZZ (eds) Polymer Nanocomposites. Woodhead, Cambridge, pp 256–272CrossRef Zanetti M (2006) Flammability and thermal stability of polymer/layered silicate nanocomposites. In: Mai YW, Yu ZZ (eds) Polymer Nanocomposites. Woodhead, Cambridge, pp 256–272CrossRef
19.
go back to reference Kishimoto Y, Ito F, Usami H, Togawa E, Tsukada M, Morikawa H, Yamanaka S (2013) Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology. Int J Biol Macromol 57:124–128CrossRef Kishimoto Y, Ito F, Usami H, Togawa E, Tsukada M, Morikawa H, Yamanaka S (2013) Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology. Int J Biol Macromol 57:124–128CrossRef
20.
go back to reference Park JH, Park SM, Kim YH, Oh W, Lee GW, Karim MR, Park JH, Yeum JH (2013) Effect of montmorillonite on wettability and microstructure properties of zein/montmorillonite nanocomposite nanofiber mats. J Compos Mater 47:251–257CrossRef Park JH, Park SM, Kim YH, Oh W, Lee GW, Karim MR, Park JH, Yeum JH (2013) Effect of montmorillonite on wettability and microstructure properties of zein/montmorillonite nanocomposite nanofiber mats. J Compos Mater 47:251–257CrossRef
21.
go back to reference Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 67:1–17CrossRef Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 67:1–17CrossRef
22.
go back to reference Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef
23.
go back to reference Song H-Z, Luo Z-Q, Wang C-Z, Hao X-F, Gao J-G (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167CrossRef Song H-Z, Luo Z-Q, Wang C-Z, Hao X-F, Gao J-G (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167CrossRef
24.
go back to reference Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88:1251–1257CrossRef Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88:1251–1257CrossRef
25.
go back to reference Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef
26.
go back to reference Higgins HG, Stewart CM, Harrington KJ (1961) Infrared spectra of cellulose and related polysaccharides. J Polym Sci 51:59–84CrossRef Higgins HG, Stewart CM, Harrington KJ (1961) Infrared spectra of cellulose and related polysaccharides. J Polym Sci 51:59–84CrossRef
27.
go back to reference Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef
28.
go back to reference Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87:1634–1640CrossRef Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87:1634–1640CrossRef
29.
go back to reference Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef
30.
go back to reference Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559CrossRef Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559CrossRef
31.
go back to reference Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. PCCP 12:1941–1947CrossRef Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. PCCP 12:1941–1947CrossRef
32.
go back to reference Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
33.
go back to reference Edwards HGM, Farwell DW, Williams AC (1994) FT-Raman spectrum of cotton: a polymeric biomolecular analysis. Spectrochim Acta A 50:807–811CrossRef Edwards HGM, Farwell DW, Williams AC (1994) FT-Raman spectrum of cotton: a polymeric biomolecular analysis. Spectrochim Acta A 50:807–811CrossRef
34.
go back to reference Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem 112:15742–15751CrossRef Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem 112:15742–15751CrossRef
35.
go back to reference Mellini M, Fuchs Y, Cecilia V, Lemaire C, Linares J (2002) Insights into the antigorite structure from Mössbauer and FTIR spectroscopies. Eur J Mineral 14:97–104CrossRef Mellini M, Fuchs Y, Cecilia V, Lemaire C, Linares J (2002) Insights into the antigorite structure from Mössbauer and FTIR spectroscopies. Eur J Mineral 14:97–104CrossRef
36.
go back to reference Čapková P, Pospíšil M, Valášková M, Měřínská D, Trchová M, Sedláková Z, Weiss Z, Šimoník J (2006) Structure of montmorillonite cointercalated with stearic acid and octadecylamine: modeling, diffraction, IR spectroscopy. J Colloid Interface Sci 300:264–269CrossRef Čapková P, Pospíšil M, Valášková M, Měřínská D, Trchová M, Sedláková Z, Weiss Z, Šimoník J (2006) Structure of montmorillonite cointercalated with stearic acid and octadecylamine: modeling, diffraction, IR spectroscopy. J Colloid Interface Sci 300:264–269CrossRef
37.
go back to reference Choy J-H, Kwak S-Y, Han Y-S, Kim B-W (1997) New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater Lett 33:143–147CrossRef Choy J-H, Kwak S-Y, Han Y-S, Kim B-W (1997) New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater Lett 33:143–147CrossRef
38.
go back to reference Doğan H, Inan TY, Koral M, Kaya M (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294CrossRef Doğan H, Inan TY, Koral M, Kaya M (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294CrossRef
39.
go back to reference Chow WS, Mohd Ishak ZA, Karger-Kocsis J, Apostolov AA, Ishiaku US (2003) Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 44:7427–7440CrossRef Chow WS, Mohd Ishak ZA, Karger-Kocsis J, Apostolov AA, Ishiaku US (2003) Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 44:7427–7440CrossRef
40.
go back to reference Wahit MU, Hassan A, Rahmat AR, Lim JW, Ishak Z (2006) Effect of organoclay and ethylene–octene copolymer inclusion on the morphology and mechanical properties of polyamide/polypropylene blends. J Reinf Plast Compos 25:933–955CrossRef Wahit MU, Hassan A, Rahmat AR, Lim JW, Ishak Z (2006) Effect of organoclay and ethylene–octene copolymer inclusion on the morphology and mechanical properties of polyamide/polypropylene blends. J Reinf Plast Compos 25:933–955CrossRef
41.
go back to reference Balakrishnan H, Hassan A, Imran M, Wahit M (2011) Aging of toughened polylactic acid nanocomposites: water absorption, hygrothermal degradation and soil burial analysis. J Polym Environ 19:863–875CrossRef Balakrishnan H, Hassan A, Imran M, Wahit M (2011) Aging of toughened polylactic acid nanocomposites: water absorption, hygrothermal degradation and soil burial analysis. J Polym Environ 19:863–875CrossRef
42.
go back to reference Balakrishnan H, Attaran SA, Imran M, Hassan A, Wahit MU (2012) Epoxidized natural rubber–toughened polypropylene/organically modified montmorillonite nanocomposites. J Thermoplast Compos Mater 27:233–250CrossRef Balakrishnan H, Attaran SA, Imran M, Hassan A, Wahit MU (2012) Epoxidized natural rubber–toughened polypropylene/organically modified montmorillonite nanocomposites. J Thermoplast Compos Mater 27:233–250CrossRef
43.
go back to reference Ambrogi V, Silvestre MG, Vito F, Carfagna C, Errico ME, Mancarella C (2005) Nanocomposites based on liquid crystalline resins. Mol Cryst Liq Cryst 429:1–20CrossRef Ambrogi V, Silvestre MG, Vito F, Carfagna C, Errico ME, Mancarella C (2005) Nanocomposites based on liquid crystalline resins. Mol Cryst Liq Cryst 429:1–20CrossRef
44.
go back to reference Xu WB, Bao SP, He PS (2002) Intercalation and exfoliation behavior of epoxy resin/curing agent/montmorillonite nanocomposite. J Appl Polym Sci 84:842–849CrossRef Xu WB, Bao SP, He PS (2002) Intercalation and exfoliation behavior of epoxy resin/curing agent/montmorillonite nanocomposite. J Appl Polym Sci 84:842–849CrossRef
45.
go back to reference Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisova-Rychlá L, Carfagna C (2008) Morphological and thermal properties of cellulose/montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRef Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisova-Rychlá L, Carfagna C (2008) Morphological and thermal properties of cellulose/montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRef
46.
go back to reference Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef
47.
go back to reference Ruan D, Zhang L, Lue A, Zhou J, Chen H, Chen X, Chu B, Kondo T (2006) A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromol Rapid Commun 27:1495–1500CrossRef Ruan D, Zhang L, Lue A, Zhou J, Chen H, Chen X, Chu B, Kondo T (2006) A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromol Rapid Commun 27:1495–1500CrossRef
48.
go back to reference Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781CrossRef Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781CrossRef
49.
go back to reference Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng C 31:954–961CrossRef Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng C 31:954–961CrossRef
50.
go back to reference Yamane C, Mori M, Saito M, Okajima K (1996) Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym J 28:1039–1047CrossRef Yamane C, Mori M, Saito M, Okajima K (1996) Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym J 28:1039–1047CrossRef
51.
go back to reference Yang G, Zhang L, Feng H (1999) Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane. J Membr Sci 161:31–40CrossRef Yang G, Zhang L, Feng H (1999) Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane. J Membr Sci 161:31–40CrossRef
52.
go back to reference Kolpak F, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278CrossRef Kolpak F, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278CrossRef
53.
go back to reference Li R, Zhang L, Xu M (2011) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100CrossRef Li R, Zhang L, Xu M (2011) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100CrossRef
54.
go back to reference Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198CrossRef Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198CrossRef
55.
go back to reference Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602CrossRef Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602CrossRef
56.
go back to reference Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef
57.
go back to reference Han D, Yan L, Chen W, Li W, Bangal PR (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972CrossRef Han D, Yan L, Chen W, Li W, Bangal PR (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972CrossRef
58.
go back to reference Lee J, Sun Q, Deng Y (2008) Nanocomposites from regenerated cellulose and nanoclay. J Biobased Mater Bioenergy 2:162–168CrossRef Lee J, Sun Q, Deng Y (2008) Nanocomposites from regenerated cellulose and nanoclay. J Biobased Mater Bioenergy 2:162–168CrossRef
59.
go back to reference Peng S, Shao H, Hu X (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90:1941–1947CrossRef Peng S, Shao H, Hu X (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90:1941–1947CrossRef
60.
go back to reference Wu Q, Pan D (2002) A new cellulose based carbon fiber from a lyocell precursor. Text Res J 72:405–410CrossRef Wu Q, Pan D (2002) A new cellulose based carbon fiber from a lyocell precursor. Text Res J 72:405–410CrossRef
62.
go back to reference Chang JH, Kim SJ (2004) Polyester nanocomposite fibers: comparison of their properties with poly(ethylene terephthalate) and poly(trimethylene terephthalate). Polym Bull 52:289–296CrossRef Chang JH, Kim SJ (2004) Polyester nanocomposite fibers: comparison of their properties with poly(ethylene terephthalate) and poly(trimethylene terephthalate). Polym Bull 52:289–296CrossRef
63.
go back to reference Zhang H, Guo L, Shao H, Hu X (2006) Nano-carbon black filled lyocell fiber as a precursor for carbon fiber. J Appl Polym Sci 99:65–74CrossRef Zhang H, Guo L, Shao H, Hu X (2006) Nano-carbon black filled lyocell fiber as a precursor for carbon fiber. J Appl Polym Sci 99:65–74CrossRef
64.
go back to reference Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRef Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRef
65.
go back to reference Guan G-H, Li C-C, Zhang D (2005) Spinning and properties of poly(ethylene terephthalate)/organomontmorillonite nanocomposite fibers. J Appl Polym Sci 95:1443–1447CrossRef Guan G-H, Li C-C, Zhang D (2005) Spinning and properties of poly(ethylene terephthalate)/organomontmorillonite nanocomposite fibers. J Appl Polym Sci 95:1443–1447CrossRef
66.
go back to reference Yoon K, Polk MB, Min BG, Schiraldi DA (2004) Structure and property study of nylon-6/clay nanocomposite fiber. Polym Int 53:2072–2078CrossRef Yoon K, Polk MB, Min BG, Schiraldi DA (2004) Structure and property study of nylon-6/clay nanocomposite fiber. Polym Int 53:2072–2078CrossRef
67.
go back to reference Chang J-H, Kim SJ, Im S (2004) Poly(trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology. Polymer 45:5171–5181CrossRef Chang J-H, Kim SJ, Im S (2004) Poly(trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology. Polymer 45:5171–5181CrossRef
Metadata
Title
Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate
Authors
Shaya Mahmoudian
Mat Uzir Wahit
A. F. Ismail
Harintharavimal Balakrishnan
Muhammad Imran
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 3/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8679-0

Other articles of this Issue 3/2015

Journal of Materials Science 3/2015 Go to the issue

Premium Partners