Skip to main content
Top

2017 | OriginalPaper | Chapter

Bioremediation of Salt-Affected Soils: Challenges and Opportunities

Authors : Sanjay Arora, Atul K. Singh, Divya Sahni

Published in: Bioremediation of Salt Affected Soils: An Indian Perspective

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A lot of work has been done on improving practices for remediation of coastal and inland salt-affected soils. This has resulted in improving crop yields in these degraded lands and thereby improving the socioeconomic status of the resource-poor farmers. Keeping in view the limited availability of good quality waters for flushing out salts and scarce mineral gypsum availability for reclaiming sodic soils, vegetative and microbial bioremediation of salt-affected soils has emerged as a promising technique. Cultivation of economically useful halophytes, salt-tolerant plants, and crop varieties capable of growing under salt-stress environments has enabled conversion of saline and sodic wastelands. The high potential for bioremediation of salt-affected soils using applications of halophilic bacteria has been reported by some researchers. The applications of halophilic bacteria include recovery of saline soil by directly supporting the growth and stress tolerance of vegetation, thus indirectly increasing crop yields in saline soil. The biotic approach “plant-microbe interaction” to overcome salinity problems has received considerable attention from many workers throughout the world recently. Plant-microbe interactions are beneficial associations between plants and microorganisms and also a more efficient method for reclamation of salt-affected soils. However, there are many challenges to overcome for widespread adoption of these techniques and opportunities for the future to reclaim salt-affected soils through bioremediation approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achouak, W., & Haichar, F. Z. (2013). Shaping of microbial community structure and function in the rhizosphere by four diverse plant species. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 161–167). Hoboken, NJ: Wiley Blackwell.CrossRef Achouak, W., & Haichar, F. Z. (2013). Shaping of microbial community structure and function in the rhizosphere by four diverse plant species. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 161–167). Hoboken, NJ: Wiley Blackwell.CrossRef
go back to reference Adhikary, S. P., & Sahu, J. K. (2000). Studies on the establishment and nitrogenase activity of inoculated cyanobacteria on the field and their effect on yield of rice. Oryza, 37, 39–43. Adhikary, S. P., & Sahu, J. K. (2000). Studies on the establishment and nitrogenase activity of inoculated cyanobacteria on the field and their effect on yield of rice. Oryza, 37, 39–43.
go back to reference Ahmad, N., Qureshi, R. H., & Qadir, M. (1990). Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degradation and Rehabilitation, 2(4), 277–284.CrossRef Ahmad, N., Qureshi, R. H., & Qadir, M. (1990). Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degradation and Rehabilitation, 2(4), 277–284.CrossRef
go back to reference Akhter, J., Mahmood, K., Malik, K. A., Ahmed, S., & Murray, R. (2003). Amelioration of a saline sodic soil through cultivation of a salt tolerant grass Leptochloa fusca. Environmental Conservation, 30(2), 168–174.CrossRef Akhter, J., Mahmood, K., Malik, K. A., Ahmed, S., & Murray, R. (2003). Amelioration of a saline sodic soil through cultivation of a salt tolerant grass Leptochloa fusca. Environmental Conservation, 30(2), 168–174.CrossRef
go back to reference Al-Abed, N., Amayreh, J., & Al-Hiyari, A. (2004). Bioremediation of a Jordanian saline soil: A laboratory study. Communications in Soil Science and Plant Analysis, 35(9 and 10), 1457–1467. Al-Abed, N., Amayreh, J., & Al-Hiyari, A. (2004). Bioremediation of a Jordanian saline soil: A laboratory study. Communications in Soil Science and Plant Analysis, 35(9 and 10), 1457–1467.
go back to reference Al-Nasir, F. (2009). Bioreclamation of a saline sodic soil in a semi arid region/Jordan. American Eurasian Journal Agricultural and Environmental Science, 5(5), 701–706. Al-Nasir, F. (2009). Bioreclamation of a saline sodic soil in a semi arid region/Jordan. American Eurasian Journal Agricultural and Environmental Science, 5(5), 701–706.
go back to reference Alvarez, M. I., Sueldo, R. J., & Barassi, C. A. (1996). Effect of Azospirillum on coleoptiles growth in wheat seedlings under water stress. Cereal Research Communications, 24, 101–107. Alvarez, M. I., Sueldo, R. J., & Barassi, C. A. (1996). Effect of Azospirillum on coleoptiles growth in wheat seedlings under water stress. Cereal Research Communications, 24, 101–107.
go back to reference Anjum, N. A., Ahmad, I., Valega, M., Mohmood, I., Gill, S. S., Tuteja, N., et al. (2014). Salt marsh halophyte services to metal-metalloid remediation: assessment of the processes and underlying mechanisms. Critical Reviews in Environmental Science and Technology, 44, 2038–2106.CrossRef Anjum, N. A., Ahmad, I., Valega, M., Mohmood, I., Gill, S. S., Tuteja, N., et al. (2014). Salt marsh halophyte services to metal-metalloid remediation: assessment of the processes and underlying mechanisms. Critical Reviews in Environmental Science and Technology, 44, 2038–2106.CrossRef
go back to reference Antoun, H., & Prevost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–39). The Netherlands: Springer. Antoun, H., & Prevost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–39). The Netherlands: Springer.
go back to reference Arora, N. K., Tewari, S., Singh, S., Lal, N., & Maheshwari, D. K. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management. Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-23465-1_12. Arora, N. K., Tewari, S., Singh, S., Lal, N., & Maheshwari, D. K. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management. Berlin/Heidelberg: Springer. doi:10.​1007/​978-3-642-23465-1_​12.
go back to reference Arora, S., Trivedi, R., & Rao, G. G. (2012). Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News, 18(2), 3. Arora, S., Trivedi, R., & Rao, G. G. (2012). Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News, 18(2), 3.
go back to reference Arora, S., Trivedi, R., & Rao, G. G. (2013). Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes (CSSRI Annual Report 2012–13, pp. 94–100). Karnal: CSSRI. Arora, S., Trivedi, R., & Rao, G. G. (2013). Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes (CSSRI Annual Report 2012–13, pp. 94–100). Karnal: CSSRI.
go back to reference Arora, S., Patel, P., Vanza, M., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from Coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.CrossRef Arora, S., Patel, P., Vanza, M., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from Coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.CrossRef
go back to reference Arora, S., Vanza, M., Mehta, R., Bhuva, C., & Patel, P. (2014). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8(33), 3070–3078.CrossRef Arora, S., Vanza, M., Mehta, R., Bhuva, C., & Patel, P. (2014). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8(33), 3070–3078.CrossRef
go back to reference Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC-deaminase in phyto-remediation. Trends in Biotechnology, 25, 356–362.CrossRef Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC-deaminase in phyto-remediation. Trends in Biotechnology, 25, 356–362.CrossRef
go back to reference Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–355). Berlin, Germany: Springer.CrossRef Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–355). Berlin, Germany: Springer.CrossRef
go back to reference Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32, 1559–1570.CrossRef Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32, 1559–1570.CrossRef
go back to reference Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1–13.CrossRef Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1–13.CrossRef
go back to reference Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15(2), 261–282. Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15(2), 261–282.
go back to reference Barea, J. M., Pozo, M. J., López-Ráez, J. A., Aroca, R., Ruíz-Lozano, J. M., Ferrol, N., et al. (2013). Arbuscular Mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses In B. Rodelas, & J. González-López (Eds.), Beneficial Plant-microbial interactions: Ecology and applications (pp. 353–387). USA: CRC Press. Barea, J. M., Pozo, M. J., López-Ráez, J. A., Aroca, R., Ruíz-Lozano, J. M., Ferrol, N., et al. (2013). Arbuscular Mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses In B. Rodelas, & J. González-López (Eds.), Beneficial Plant-microbial interactions: Ecology and applications (pp. 353–387). USA: CRC Press.
go back to reference Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil, 378, 1–33. Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil, 378, 1–33.
go back to reference Becerra-Castro, C., Kidd, P. S., Rodríguez-Garrido, B., Monterroso, C., Santos-Ucha, P., & Prieto-Fernández, Á. (2013). Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environmental Pollution, 178, 202–210.CrossRef Becerra-Castro, C., Kidd, P. S., Rodríguez-Garrido, B., Monterroso, C., Santos-Ucha, P., & Prieto-Fernández, Á. (2013). Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environmental Pollution, 178, 202–210.CrossRef
go back to reference Bell, T. H., Joly, S., Pitre, F. E., & Yergeau, E. (2014). Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 32, 271–280.CrossRef Bell, T. H., Joly, S., Pitre, F. E., & Yergeau, E. (2014). Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 32, 271–280.CrossRef
go back to reference Boyko, H. (1966). Basic ecological principles of plant growing by irrigation with high saline seawater. In H. Boyko (Ed.), Salinity and aridity. The Hauge: D.W. Junk Publisher.CrossRef Boyko, H. (1966). Basic ecological principles of plant growing by irrigation with high saline seawater. In H. Boyko (Ed.), Salinity and aridity. The Hauge: D.W. Junk Publisher.CrossRef
go back to reference Chaudhry, M. R., & Abaidullah, M. (1988). Economics and effectiveness of biological and chemical methods in soil reclamation. Pakistan Journal of Agricultural Research, 9, 106–114. Chaudhry, M. R., & Abaidullah, M. (1988). Economics and effectiveness of biological and chemical methods in soil reclamation. Pakistan Journal of Agricultural Research, 9, 106–114.
go back to reference Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry, 35, 939–944. Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry, 35, 939–944.
go back to reference Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1998). Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Canadian Journal of Botany, 76, 238–244.CrossRef Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1998). Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Canadian Journal of Botany, 76, 238–244.CrossRef
go back to reference Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115, 9–16.CrossRef Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115, 9–16.CrossRef
go back to reference Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121–147. Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121–147.
go back to reference de Villiers, A. J., van Rooyen, M. W., Theron, G. K., & Claassens, A. S. (1995). Removal of sodium and chloride from a saline soil by Mesembryanthemum barklyi. Journal of Arid Environments, 29(3), 325–330.CrossRef de Villiers, A. J., van Rooyen, M. W., Theron, G. K., & Claassens, A. S. (1995). Removal of sodium and chloride from a saline soil by Mesembryanthemum barklyi. Journal of Arid Environments, 29(3), 325–330.CrossRef
go back to reference Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32, 1682–1694.CrossRef Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32, 1682–1694.CrossRef
go back to reference Dodd, I. C., & Perez-Alfocea, F. (2012). Microbial alleviation of crop salinity. Journal of Experimental Botany, 63, 3415–3428.CrossRef Dodd, I. C., & Perez-Alfocea, F. (2012). Microbial alleviation of crop salinity. Journal of Experimental Botany, 63, 3415–3428.CrossRef
go back to reference Duan, J., Muller, K. M., Charles, T. C., Vesely, S., & Glick, B. R. (2009). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microbial Ecology, 57, 423–436.CrossRef Duan, J., Muller, K. M., Charles, T. C., Vesely, S., & Glick, B. R. (2009). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microbial Ecology, 57, 423–436.CrossRef
go back to reference Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36(3), 232–244.CrossRef Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36(3), 232–244.CrossRef
go back to reference Easton, L., & Kleindorfer, S. (2009). Effects of salinity levels and seed mass on germination in Australian species of Frankenia L. (Frankeniaceae). Environmental and Experimental Botany, 65, 345–352.CrossRef Easton, L., & Kleindorfer, S. (2009). Effects of salinity levels and seed mass on germination in Australian species of Frankenia L. (Frankeniaceae). Environmental and Experimental Botany, 65, 345–352.CrossRef
go back to reference Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963.CrossRef Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963.CrossRef
go back to reference Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry, 41, 277–281.CrossRef Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry, 41, 277–281.CrossRef
go back to reference Gillespie, I. M. M., & Philp, J. C. (2013). Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology, 31, 329–332.CrossRef Gillespie, I. M. M., & Philp, J. C. (2013). Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology, 31, 329–332.CrossRef
go back to reference Glenn, E., Miyamoto, S., Moore, D., Brown, J. J., Thompson, T. L., & Brown, P. (1997). Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. Journal of Arid Environments, 36(4), 711–730.CrossRef Glenn, E., Miyamoto, S., Moore, D., Brown, J. J., Thompson, T. L., & Brown, P. (1997). Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. Journal of Arid Environments, 36(4), 711–730.CrossRef
go back to reference Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255.CrossRef Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255.CrossRef
go back to reference Glick, B. R. (1995). Enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRef Glick, B. R. (1995). Enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRef
go back to reference Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase producing soil bacteria. European Journal of Plant Pathology, 119, 329–339.CrossRef Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase producing soil bacteria. European Journal of Plant Pathology, 119, 329–339.CrossRef
go back to reference Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria (pp. 187–189). London: Imperical College Press.CrossRef Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria (pp. 187–189). London: Imperical College Press.CrossRef
go back to reference Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63–68.CrossRef Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63–68.CrossRef
go back to reference Govindasamy, V., Senthilkumar, M., Gaikwad, K., & Annapurna, K. (2008). Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Current Microbiology, 57(4), 312–317.CrossRef Govindasamy, V., Senthilkumar, M., Gaikwad, K., & Annapurna, K. (2008). Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Current Microbiology, 57(4), 312–317.CrossRef
go back to reference Goyal, S. K., & Venkataraman, G. S. (1971). Effects of algalization on high yielding rice varieties. II. Response of soil types. Phykos, 10, 32–38. Goyal, S. K., & Venkataraman, G. S. (1971). Effects of algalization on high yielding rice varieties. II. Response of soil types. Phykos, 10, 32–38.
go back to reference Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.CrossRef Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.CrossRef
go back to reference Gul, B., Weber, D. J., & Khan, M. A. (2000). Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. Western North American Naturalist, 60(2), 188–197. Gul, B., Weber, D. J., & Khan, M. A. (2000). Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. Western North American Naturalist, 60(2), 188–197.
go back to reference Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, Article ID 589341, 12. Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, Article ID 589341, 12.
go back to reference Hirsch, A. M., & Fang, Y. (1994). Plant hormones and nodulation: What’s the connection? Plant Molecular Biology, 26, 5–9.CrossRef Hirsch, A. M., & Fang, Y. (1994). Plant hormones and nodulation: What’s the connection? Plant Molecular Biology, 26, 5–9.CrossRef
go back to reference Hirsch, P. R., Miller, A. J., & Dennis, P. G. (2013). Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 229–242). Hoboken, NJ: Wiley Blackwell.CrossRef Hirsch, P. R., Miller, A. J., & Dennis, P. G. (2013). Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 229–242). Hoboken, NJ: Wiley Blackwell.CrossRef
go back to reference Huang, Z., Zhang, X., Zheng, G., & Gutterman, Y. (2003). Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments, 55, 453–464.CrossRef Huang, Z., Zhang, X., Zheng, G., & Gutterman, Y. (2003). Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments, 55, 453–464.CrossRef
go back to reference Ilyas, N., Bano, A., Iqbal, S., & Raja, N. I. (2012). Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pakistan Journal of Botany, 44, 71–80. Ilyas, N., Bano, A., Iqbal, S., & Raja, N. I. (2012). Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pakistan Journal of Botany, 44, 71–80.
go back to reference Imhoff, J. F. (1993). Osmotic adaptation in halophilic and halotolerant microorganisms. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 211–212). Boca Raton: CRC Press. Imhoff, J. F. (1993). Osmotic adaptation in halophilic and halotolerant microorganisms. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 211–212). Boca Raton: CRC Press.
go back to reference Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: Their role in stress defence. Journal of Genetics, 85(3), 237–254.CrossRef Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: Their role in stress defence. Journal of Genetics, 85(3), 237–254.CrossRef
go back to reference Kamilova, F., Okon, Y., de Weert, S., & Hora, K. (2015). Commercialization of microbes: Manufacturing, inoculation, best practice for objective field testing, and registration. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 319–327). Heidelberg: Springer International Publishing Switzerland. Kamilova, F., Okon, Y., de Weert, S., & Hora, K. (2015). Commercialization of microbes: Manufacturing, inoculation, best practice for objective field testing, and registration. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 319–327). Heidelberg: Springer International Publishing Switzerland.
go back to reference Kausar, R., & Shahzad, S. M. (2006). Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. Journal of Agriculture and Social Science, 2, 216–218. Kausar, R., & Shahzad, S. M. (2006). Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. Journal of Agriculture and Social Science, 2, 216–218.
go back to reference Kaushik, B. D., & Subhasini, D. (1995). Amelioration of salt affected soils with BGA. II. Improvement of soil properties. Proceeding of Natural Science Academy, 51B, 386–389. Kaushik, B. D., & Subhasini, D. (1995). Amelioration of salt affected soils with BGA. II. Improvement of soil properties. Proceeding of Natural Science Academy, 51B, 386–389.
go back to reference Khan, M. A., & Gul, B. (2006). Halophyte seed germination. In M. A. Khan, & D. J. Weber (Eds.), Eco-physiology of High Salinity Tolerant Plants (pp. 11–30). Netherlands: Springer. Khan, M. A., & Gul, B. (2006). Halophyte seed germination. In M. A. Khan, & D. J. Weber (Eds.), Eco-physiology of High Salinity Tolerant Plants (pp. 11–30). Netherlands: Springer.
go back to reference Kilic, C., Kukul, Y., & Anac, D. (2008). Performance of purslane (Portulaca oleracea, L.), as a salt removing crop. Agricultural Water Management, 95(7), 854–858.CrossRef Kilic, C., Kukul, Y., & Anac, D. (2008). Performance of purslane (Portulaca oleracea, L.), as a salt removing crop. Agricultural Water Management, 95(7), 854–858.CrossRef
go back to reference Ligero, F., Caba, J. M., Lluch, C., & Oliverase, J. (1991). Nitrate inhibition of nodulation can be overcome by ethylene inhibitor amino ethoxy vinyl glycine. Plant Physiology, 97(3), 1221–1225.CrossRef Ligero, F., Caba, J. M., Lluch, C., & Oliverase, J. (1991). Nitrate inhibition of nodulation can be overcome by ethylene inhibitor amino ethoxy vinyl glycine. Plant Physiology, 97(3), 1221–1225.CrossRef
go back to reference Lokhande, V. H., & Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 29–56). NewYork: Springer.CrossRef Lokhande, V. H., & Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 29–56). NewYork: Springer.CrossRef
go back to reference Mayak, S., Tirosh, T., & Glick, B. R. (1999). Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18, 49–53.CrossRef Mayak, S., Tirosh, T., & Glick, B. R. (1999). Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18, 49–53.CrossRef
go back to reference Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.CrossRef Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.CrossRef
go back to reference Moral, A. D., Prado, B., Quesda, E., Gacria, T., Ferrer, R., & Ramos-Comenzana, R. (1988). Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. Journal of General Microbiology, 134, 733–741. Moral, A. D., Prado, B., Quesda, E., Gacria, T., Ferrer, R., & Ramos-Comenzana, R. (1988). Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. Journal of General Microbiology, 134, 733–741.
go back to reference Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.CrossRef Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.CrossRef
go back to reference Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.CrossRef Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.CrossRef
go back to reference O’Leary, J. (1994). The agricultural use of native plants on problem soils. Monographs on Theoretical and Applied Genetics, 21, 127–143.CrossRef O’Leary, J. (1994). The agricultural use of native plants on problem soils. Monographs on Theoretical and Applied Genetics, 21, 127–143.CrossRef
go back to reference Oldroyd, G. E. D., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.CrossRef Oldroyd, G. E. D., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.CrossRef
go back to reference Oren, A. (2002). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28(1), 56–63.CrossRef Oren, A. (2002). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28(1), 56–63.CrossRef
go back to reference Padhi, H., Rath, B., & Adhikary, S. P. (1997). Tolerance of nitrogen fixing cyanobacteria to NaCl. Biology of Plant, 40, 262–268.CrossRef Padhi, H., Rath, B., & Adhikary, S. P. (1997). Tolerance of nitrogen fixing cyanobacteria to NaCl. Biology of Plant, 40, 262–268.CrossRef
go back to reference Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 32, 181–200.CrossRef Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 32, 181–200.CrossRef
go back to reference Pozo, M., López-Ráez, J., Azcón-Aguilar, C., & García-Garrido, J. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205, 1431–1436.CrossRef Pozo, M., López-Ráez, J., Azcón-Aguilar, C., & García-Garrido, J. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205, 1431–1436.CrossRef
go back to reference Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2005). Sodicity-induced land degradation and its sustainable management: Problems and Prospects. Land Degradation and Development. doi:10.1002/ldr.751. Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2005). Sodicity-induced land degradation and its sustainable management: Problems and Prospects. Land Degradation and Development. doi:10.​1002/​ldr.​751.
go back to reference Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.CrossRef Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.CrossRef
go back to reference Qadir, M., Qureshi, R. H., & Ahmad, N. (1996). Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma, 74(3-4), 207–217.CrossRef Qadir, M., Qureshi, R. H., & Ahmad, N. (1996). Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma, 74(3-4), 207–217.CrossRef
go back to reference Qureshi, R. H., Nawaz, S., & Mahmood, T. (1993). Performance of selected tree species under saline-sodic field conditions in Pakistan. In H. Lieth & A. Al Masoom (Eds.), Towards the rational use of high salinity tolerant plants (Vol. 1, pp. 259–269). Dordrecht: Kluwer.CrossRef Qureshi, R. H., Nawaz, S., & Mahmood, T. (1993). Performance of selected tree species under saline-sodic field conditions in Pakistan. In H. Lieth & A. Al Masoom (Eds.), Towards the rational use of high salinity tolerant plants (Vol. 1, pp. 259–269). Dordrecht: Kluwer.CrossRef
go back to reference Raaijmakers, J. M. (2015). The minimal rhizosphere microbiome. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 411–417). Heidelberg: Springer International Publishing Switzerland. Raaijmakers, J. M. (2015). The minimal rhizosphere microbiome. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 411–417). Heidelberg: Springer International Publishing Switzerland.
go back to reference Rabhi, M., Hafsi, C., Lakhdar, A., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47(4), 463–468.CrossRef Rabhi, M., Hafsi, C., Lakhdar, A., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47(4), 463–468.CrossRef
go back to reference Rabhi, M., Talbi, O., Atia, A., Chedly, A., & Smaoui, A. (2008). Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In Biosaline agriculture and high salinity tolerance (pp. 242–246). Rabhi, M., Talbi, O., Atia, A., Chedly, A., & Smaoui, A. (2008). Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In Biosaline agriculture and high salinity tolerance (pp. 242–246).
go back to reference Rajput, L., Imran, A., Mubeen, F., & Hafeez, Y. (2013). Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany, 45(6), 1955–1962. Rajput, L., Imran, A., Mubeen, F., & Hafeez, Y. (2013). Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany, 45(6), 1955–1962.
go back to reference Rao, D. L. N., & Burns, R. G. (1991). The influence of blue-green algae on the biological amelioration of alkali soils. Biology and Fertility of Soils, 11, 306–312.CrossRef Rao, D. L. N., & Burns, R. G. (1991). The influence of blue-green algae on the biological amelioration of alkali soils. Biology and Fertility of Soils, 11, 306–312.CrossRef
go back to reference Rath, B., & Adhikary, S. P. (1995). Toxicity of Furadan to several nitrogen fixing cyanobacteria from rice field of coastal Orissa, India. Tropical Agriculture Trinidad, 72, 80–84. Rath, B., & Adhikary, S. P. (1995). Toxicity of Furadan to several nitrogen fixing cyanobacteria from rice field of coastal Orissa, India. Tropical Agriculture Trinidad, 72, 80–84.
go back to reference Rausch, T., Kirsch, M., Löw, R., Lehr, A., Viereck, R., & Zhigang, A. N. (1996). Salt stress responses of higher plants: The role of proton pumps and Na+/H+-antiporters. Journal of Plant Physiology, 148(3–4), 425–433.CrossRef Rausch, T., Kirsch, M., Löw, R., Lehr, A., Viereck, R., & Zhigang, A. N. (1996). Salt stress responses of higher plants: The role of proton pumps and Na+/H+-antiporters. Journal of Plant Physiology, 148(3–4), 425–433.CrossRef
go back to reference Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions. Microbes for sustainable agriculture (pp. 309–317). Heidelberg: Springer International Publishing Switzerland. Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions. Microbes for sustainable agriculture (pp. 309–317). Heidelberg: Springer International Publishing Switzerland.
go back to reference Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39(10), 2661–2664.CrossRef Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39(10), 2661–2664.CrossRef
go back to reference Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.CrossRef Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.CrossRef
go back to reference Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., et al. (1987). Azospirillum halopraeferens sp. nov., a nitrogen fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.). International Journal of Systematic Bacteriology, 37, 43–51.CrossRef Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., et al. (1987). Azospirillum halopraeferens sp. nov., a nitrogen fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.). International Journal of Systematic Bacteriology, 37, 43–51.CrossRef
go back to reference Robert, M. F. (2000). Osmoadaptation and osmoregulation in archaea. Frontiers in Bioscience, 5, 796–812.CrossRef Robert, M. F. (2000). Osmoadaptation and osmoregulation in archaea. Frontiers in Bioscience, 5, 796–812.CrossRef
go back to reference Rodriguez-Valera, F. (1993). Introduction to saline environments. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 1–12). Boca Raton: CRC Press. Rodriguez-Valera, F. (1993). Introduction to saline environments. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 1–12). Boca Raton: CRC Press.
go back to reference Rodriguez-Valera, F., Ventosa, A., Juez, G., & Imhoff, L. F. (1985). Variation of environmental features and microbial populations with the salt concentrations in a multi-pond saltern. Microbial Ecology, 11, 107–111.CrossRef Rodriguez-Valera, F., Ventosa, A., Juez, G., & Imhoff, L. F. (1985). Variation of environmental features and microbial populations with the salt concentrations in a multi-pond saltern. Microbial Ecology, 11, 107–111.CrossRef
go back to reference Rogers, C., & Oldroyd, G. E. D. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65, 1939–1946.CrossRef Rogers, C., & Oldroyd, G. E. D. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65, 1939–1946.CrossRef
go back to reference Roohi, A., Ahmed, I., Iqbal, M., & Jamil, M. (2012). Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt Mines of Karak. Pakistan Journal of Botany, 44, 365–370. Roohi, A., Ahmed, I., Iqbal, M., & Jamil, M. (2012). Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt Mines of Karak. Pakistan Journal of Botany, 44, 365–370.
go back to reference Russell, N. J. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21(1), 93–113.CrossRef Russell, N. J. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21(1), 93–113.CrossRef
go back to reference Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49, 643–668.CrossRef Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49, 643–668.CrossRef
go back to reference Sandhu, G. R., & Qureshi, R. H. (1986). Salt-affected soils of Pakistan and their utilization. Reclamation and Revegetation Research, 5, 105–113. Sandhu, G. R., & Qureshi, R. H. (1986). Salt-affected soils of Pakistan and their utilization. Reclamation and Revegetation Research, 5, 105–113.
go back to reference Savka, M. A., Dessaux, Y., McSpadden Gardener, B. B., Mondy, S., Kohler, P. R. A., de Bruijn, F. J., et al. (2013). The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 1147–1161). Hoboken, NJ: Wiley Blackwell. Savka, M. A., Dessaux, Y., McSpadden Gardener, B. B., Mondy, S., Kohler, P. R. A., de Bruijn, F. J., et al. (2013). The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 1147–1161). Hoboken, NJ: Wiley Blackwell.
go back to reference Serrano, R. (1996). Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. International Review of Cytology, 165, 1–52.CrossRef Serrano, R. (1996). Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. International Review of Cytology, 165, 1–52.CrossRef
go back to reference Shiyab, S. M., Shibli, R. A., & Mohammad, M. M. (2003). Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26(5), 985–996.CrossRef Shiyab, S. M., Shibli, R. A., & Mohammad, M. M. (2003). Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26(5), 985–996.CrossRef
go back to reference Singh, B. K., & Naidu, R. (2012). Cleaning contaminated environment: A growing challenge. Biodegradation, 23, 785–786.CrossRef Singh, B. K., & Naidu, R. (2012). Cleaning contaminated environment: A growing challenge. Biodegradation, 23, 785–786.CrossRef
go back to reference Singh, K., Chauhan, H. S., Rajput, D. K., & Singh, D. V. (1989). Report of a 60 month study on litter production, changes in soil chemical properties and productivity under Poplar (P. deltoides) and Eucalyptus (E. hybrid) interplanted with aromatic grasses. Agroforestry Systems, 9(1), 37–45.CrossRef Singh, K., Chauhan, H. S., Rajput, D. K., & Singh, D. V. (1989). Report of a 60 month study on litter production, changes in soil chemical properties and productivity under Poplar (P. deltoides) and Eucalyptus (E. hybrid) interplanted with aromatic grasses. Agroforestry Systems, 9(1), 37–45.CrossRef
go back to reference Singh, R. P., & Jha, P. N. (2015). Plant growth potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: A plant adapted to saline environments. International Journal of Current Microbiology and Applied Sciences, 4(7), 142–152. Singh, R. P., & Jha, P. N. (2015). Plant growth potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: A plant adapted to saline environments. International Journal of Current Microbiology and Applied Sciences, 4(7), 142–152.
go back to reference Skladany, G. J., & Metting, F. B. (1993). Bioremediation of contaminated soil. In F. B. Metting (Ed.), Soil microbial ecology: Applications in agricultural and environmental management (pp. 483–513). New York: Marcel Dekker. Skladany, G. J., & Metting, F. B. (1993). Bioremediation of contaminated soil. In F. B. Metting (Ed.), Soil microbial ecology: Applications in agricultural and environmental management (pp. 483–513). New York: Marcel Dekker.
go back to reference Sosa, L., Llanes, A., Reinoso, H., Reginato, M., & Luna, V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Annals of Botany, 96, 261–267.CrossRef Sosa, L., Llanes, A., Reinoso, H., Reginato, M., & Luna, V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Annals of Botany, 96, 261–267.CrossRef
go back to reference Spence, C., & Bais, H. (2013). Probiotics for plants: Rhizospheric microbiome and plant fitness. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 713–721). Hoboken, NJ: Wiley Blackwell.CrossRef Spence, C., & Bais, H. (2013). Probiotics for plants: Rhizospheric microbiome and plant fitness. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 713–721). Hoboken, NJ: Wiley Blackwell.CrossRef
go back to reference Tanner, C. E., & Parham, T. (2010). Growing Zostera marina (eelgrass) from seeds in land-based culture systems for use in restoration projects. Restoration Ecology, 18, 527–537.CrossRef Tanner, C. E., & Parham, T. (2010). Growing Zostera marina (eelgrass) from seeds in land-based culture systems for use in restoration projects. Restoration Ecology, 18, 527–537.CrossRef
go back to reference Thijs, S., Dillewijn, P. W., Sillen, W., Truyens, S., Holtappels, M., Haen, J. D., et al. (2014). Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: Towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant and Soil, 385, 15–36.CrossRef Thijs, S., Dillewijn, P. W., Sillen, W., Truyens, S., Holtappels, M., Haen, J. D., et al. (2014). Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: Towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant and Soil, 385, 15–36.CrossRef
go back to reference Tripathi, V., Fraceto, L. F., & Abhilash, P. C. (2015). Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecological Engineering, 82, 330–335.CrossRef Tripathi, V., Fraceto, L. F., & Abhilash, P. C. (2015). Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecological Engineering, 82, 330–335.CrossRef
go back to reference Trivedi, R., & Arora, S. (2013). Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. International Research Journal of Chemistry, 3(3), 8–13. Trivedi, R., & Arora, S. (2013). Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. International Research Journal of Chemistry, 3(3), 8–13.
go back to reference Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizosphere soil of wheat under saline condition. Current Microbiology, 59, 489–496.CrossRef Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizosphere soil of wheat under saline condition. Current Microbiology, 59, 489–496.CrossRef
go back to reference Venkataraman, G. S. (1981). Blue green algae for rice production—A manual for its production. FAO Soil Bulletin, 46, 102. Venkataraman, G. S. (1981). Blue green algae for rice production—A manual for its production. FAO Soil Bulletin, 46, 102.
go back to reference Venkateshwaran, M. (2015). Exploring the feasibility of transferring nitrogen fixation to cereal crops. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 403–410). Heidelberg: Springer International Publishing Switzerland. Venkateshwaran, M. (2015). Exploring the feasibility of transferring nitrogen fixation to cereal crops. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 403–410). Heidelberg: Springer International Publishing Switzerland.
go back to reference Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.
go back to reference Ventosa, A., Ramose Cormenzana, A., & Kocur, M. (1983). Moderately halophilic Gram-positive cocci from hypersaline environments. Systematic and Applied Microbiology, 4, 564–570.CrossRef Ventosa, A., Ramose Cormenzana, A., & Kocur, M. (1983). Moderately halophilic Gram-positive cocci from hypersaline environments. Systematic and Applied Microbiology, 4, 564–570.CrossRef
go back to reference Vessey, K. J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRef Vessey, K. J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRef
go back to reference Vivekanandan, M., Karthik, R., & Leela, A. (2015). Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria - Current perspective. International Journal of Advanced Research, 3(7), 1273–1283. Vivekanandan, M., Karthik, R., & Leela, A. (2015). Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria - Current perspective. International Journal of Advanced Research, 3(7), 1273–1283.
go back to reference Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.CrossRef Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.CrossRef
go back to reference Yensen, N. P. (2008). Halophyte uses for the twenty-first century. In M. A. Khan, & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 367–396). Yensen, N. P. (2008). Halophyte uses for the twenty-first century. In M. A. Khan, & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 367–396).
go back to reference Yuhashi, K. I., Chikawa, N., Ezuura, H., Akao, S., Minakawa, Y., NuKui, N., et al. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness of Macroptilium atropurpureum. Applied and Environmental Microbiology, 66, 2658–2663.CrossRef Yuhashi, K. I., Chikawa, N., Ezuura, H., Akao, S., Minakawa, Y., NuKui, N., et al. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness of Macroptilium atropurpureum. Applied and Environmental Microbiology, 66, 2658–2663.CrossRef
go back to reference Zahir, Z. A., Munir, A., Asghar, H. N., Shahroona, B., & Arshad, M. (2007). Effectiveness of Rhizobacterium containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963. Zahir, Z. A., Munir, A., Asghar, H. N., Shahroona, B., & Arshad, M. (2007). Effectiveness of Rhizobacterium containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.
go back to reference Zancarini, A., Lépinay, C., Burstin, J., Duc, G., Lemanceau, P., Moreau, D., et al. (2013). Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities’ interactions in the rhizosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 69–86). Hoboken, NJ: Wiley Blackwell.CrossRef Zancarini, A., Lépinay, C., Burstin, J., Duc, G., Lemanceau, P., Moreau, D., et al. (2013). Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities’ interactions in the rhizosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 69–86). Hoboken, NJ: Wiley Blackwell.CrossRef
go back to reference Zheng, Y., Rimmington, G. M., Cao, Y., Jiang, L., Xing, X., An, P., et al. (2005). Germination characteristics of Artemisia ordosica (Asteraceae) in relation to ecological restoration in northern China. Canadian Journal of Botany, 83, 1021–1028.CrossRef Zheng, Y., Rimmington, G. M., Cao, Y., Jiang, L., Xing, X., An, P., et al. (2005). Germination characteristics of Artemisia ordosica (Asteraceae) in relation to ecological restoration in northern China. Canadian Journal of Botany, 83, 1021–1028.CrossRef
go back to reference Zhu, J.-K., Hasegawa, P. M., & Bressan, R. A. (1997). Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences, 16, 253–277.CrossRef Zhu, J.-K., Hasegawa, P. M., & Bressan, R. A. (1997). Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences, 16, 253–277.CrossRef
go back to reference Zolla, G., Bakker, M. G., Badri, D. V., Chaparro, J. M., Sheflin, A. M., Manter, D. K., et al. (2013). Understanding root-microbiome interactions. In: F. J. de Bruijn (Eds.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 745–754). Wiley Blackwell. Zolla, G., Bakker, M. G., Badri, D. V., Chaparro, J. M., Sheflin, A. M., Manter, D. K., et al. (2013). Understanding root-microbiome interactions. In: F. J. de Bruijn (Eds.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 745–754). Wiley Blackwell.
Metadata
Title
Bioremediation of Salt-Affected Soils: Challenges and Opportunities
Authors
Sanjay Arora
Atul K. Singh
Divya Sahni
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-48257-6_14