Skip to main content
Top

2024 | OriginalPaper | Chapter

Biosynthesis Application and Modification of Protein Fiber

Authors : Fazal-ur-Rehman, Aiman Fatima, Shahid Adeel, Muhammad Abdul Qayyum, Hamid Ali Tanveer

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wool, silk, and cashmere are natural fibers, proteins which are developed of condensed alpha-amino acids found in animal sources. They possess unique characteristics, including warmth, moisture-wicking ability, and resilience. Wool, a widely used protein fiber, is synthesized from keratin produced by specialized cells in sheep's skin. The wool life cycle involves shearing, cleaning, spinning, and manufacturing into various products like clothing, blankets, and upholstery. The chemical composition of wool includes keratin, which gives it its distinctive properties. Wool finds applications in clothing, home textiles, outdoor gear, filtration, insulation, and various industrial sectors. Protein fibers, such as collagen and silk, have diverse medical applications. They are commonly used in wound dressings, tissue engineering scaffolds, and controlled drug delivery systems. Protein fibers offer unique properties, including biocompatibility, biodegradability, and mechanical strength, making them valuable in the development of artificial organs and surgical materials. Additionally, these fibers have potential applications in bioadhesives for tissue sealing and wound closure. As research continues, exploring the full potential of protein fibers from various sources may lead to innovative advancements in medical technology and therapeutics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdussalam-Mohammed, W., Amar, I. A., AlMaky, M. M., Abdelhameed, A., & Errayes, A. O. (2023). Silver nanoparticles and protein polymer-based nanomedicines. In Protein-Based Biopolymers, 3(1), 239–311. Abdussalam-Mohammed, W., Amar, I. A., AlMaky, M. M., Abdelhameed, A., & Errayes, A. O. (2023). Silver nanoparticles and protein polymer-based nanomedicines. In Protein-Based Biopolymers, 3(1), 239–311.
2.
go back to reference Ali, M. A., Gad-Allah, A. A. I., Al-Betar, E. M., & El-Newashy, R. F. (2022). Effect of blending ratio and sewing characteristics on performance properties for barki wool/ polyester fabrics. Journal of Natural Fibers, 19(16), 13864–13875. Ali, M. A., Gad-Allah, A. A. I., Al-Betar, E. M., & El-Newashy, R. F. (2022). Effect of blending ratio and sewing characteristics on performance properties for barki wool/ polyester fabrics. Journal of Natural Fibers, 19(16), 13864–13875.
3.
go back to reference Allafi, F. A., Hossain, M. S., Shaah, M., Lalung, J., Ab Kadir, M. O., & Ahmad, M. I. (2022). A review on characterization of sheep wool impurities and existing techniques of cleaning: industrial and environmental challenges. Journal of Natural Fibers, 19(14), 8669–8687.CrossRef Allafi, F. A., Hossain, M. S., Shaah, M., Lalung, J., Ab Kadir, M. O., & Ahmad, M. I. (2022). A review on characterization of sheep wool impurities and existing techniques of cleaning: industrial and environmental challenges. Journal of Natural Fibers, 19(14), 8669–8687.CrossRef
4.
go back to reference Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497–512.CrossRef Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497–512.CrossRef
5.
go back to reference Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30(2), 101216.CrossRef Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30(2), 101216.CrossRef
6.
go back to reference Amin, N., Rehman, F. U., Adeel, S., Ahamd, T., Muneer, M., & Haji, A. (2020). Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 27(4), 6851–6860.PubMedCrossRef Amin, N., Rehman, F. U., Adeel, S., Ahamd, T., Muneer, M., & Haji, A. (2020). Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 27(4), 6851–6860.PubMedCrossRef
7.
go back to reference Andonegi, M., Correia, D. M., Costa, C. M., Lanceros-Mendez, S., de la Caba, K., & Guerrero, P. (2022). Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 25(2), 124943.CrossRef Andonegi, M., Correia, D. M., Costa, C. M., Lanceros-Mendez, S., de la Caba, K., & Guerrero, P. (2022). Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 25(2), 124943.CrossRef
8.
go back to reference Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713.PubMedPubMedCentralCrossRef Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713.PubMedPubMedCentralCrossRef
9.
go back to reference Asquith, R. S. (2012). Chemistry of natural protein fibers. Springer Science & Business Media. Asquith, R. S. (2012). Chemistry of natural protein fibers. Springer Science & Business Media.
10.
go back to reference Aznar-Cervantes, S. D., Monteagudo Santesteban, B., & Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12), 1059.PubMedPubMedCentralCrossRef Aznar-Cervantes, S. D., Monteagudo Santesteban, B., & Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12), 1059.PubMedPubMedCentralCrossRef
11.
go back to reference Buccitelli, C., & Selbach, M. (2020). mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics, 21(10), 630–644PubMedCrossRef Buccitelli, C., & Selbach, M. (2020). mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics21(10), 630–644PubMedCrossRef
12.
go back to reference Dandolo, V. (2019). The Art of Rearing Silk-Worms. Cambridge University Press. Dandolo, V. (2019). The Art of Rearing Silk-Worms. Cambridge University Press.
13.
go back to reference Deng, C., Yang, J., He, H., Ma, Z., Wang, W., Zhang, Y., & Wang, J. (2021). 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomaterials Science, 9(14), 4891–4903.PubMedCrossRef Deng, C., Yang, J., He, H., Ma, Z., Wang, W., Zhang, Y., & Wang, J. (2021). 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomaterials Science, 9(14), 4891–4903.PubMedCrossRef
14.
go back to reference Doblhofer, E., Heidebrecht, A., & Scheibel, T. (2015). To spin or not to spin: spider silk fibers and more. Applied microbiology and biotechnology, 99, 9361–9380.PubMedCrossRef Doblhofer, E., Heidebrecht, A., & Scheibel, T. (2015). To spin or not to spin: spider silk fibers and more. Applied microbiology and biotechnology, 99, 9361–9380.PubMedCrossRef
15.
go back to reference Donato, R. K., & Mija, A. (2019). Keratin associations with synthetic, biosynthetic and natural polymers: an extensive review. Polymers, 12(1), 32.PubMedPubMedCentralCrossRef Donato, R. K., & Mija, A. (2019). Keratin associations with synthetic, biosynthetic and natural polymers: an extensive review. Polymers, 12(1), 32.PubMedPubMedCentralCrossRef
16.
go back to reference El-Ghorab, A., El-Massry, K. F., & Shibamoto, T. (2007). Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry, 55(22), 9124–9127. El-Ghorab, A., El-Massry, K. F., & Shibamoto, T. (2007). Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry, 55(22), 9124–9127.
17.
go back to reference EL-Sayed, H., & El-Hawary, N. (2022). The use of modified Fenton chemistry for reducing energy consumption during dyeing of wool and nylon 6 fabrics with acid dyes. Journal of Natural Fibers, 19(13), 6865–6877. EL-Sayed, H., & El-Hawary, N. (2022). The use of modified Fenton chemistry for reducing energy consumption during dyeing of wool and nylon 6 fabrics with acid dyes. Journal of Natural Fibers, 19(13), 6865–6877.
18.
go back to reference Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829–12848.CrossRef Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829–12848.CrossRef
19.
go back to reference Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14(2), 1558925019872200. Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14(2), 1558925019872200.
20.
go back to reference Frank, E. N., Hick, M. V. H., & Castillo, M. F. (2022). Determination of the efficiency of the AM2 dehairing technology process with Llama fiber of different types of fleeces and Alpaca Huacaya fiber. Journal of Textile Engineering & Fashion Technology, 8(1), 6–8.CrossRef Frank, E. N., Hick, M. V. H., & Castillo, M. F. (2022). Determination of the efficiency of the AM2 dehairing technology process with Llama fiber of different types of fleeces and Alpaca Huacaya fiber. Journal of Textile Engineering & Fashion Technology, 8(1), 6–8.CrossRef
21.
go back to reference Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.PubMedCrossRef Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.PubMedCrossRef
22.
go back to reference Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.PubMedPubMedCentralCrossRef Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.PubMedPubMedCentralCrossRef
23.
go back to reference Gopu, P., Murali, N., Saravanan, R., Balasundaram, B., & Malarmathi, M. (2021). Study on wool quality and traditional pattern of wool weaving from tiruchy black sheep in Tamil Nadu. Indian Journal of Small Ruminants, 27(2), 271–274.CrossRef Gopu, P., Murali, N., Saravanan, R., Balasundaram, B., & Malarmathi, M. (2021). Study on wool quality and traditional pattern of wool weaving from tiruchy black sheep in Tamil Nadu. Indian Journal of Small Ruminants, 27(2), 271–274.CrossRef
24.
go back to reference Guo, C. (2021). Insect and animal-originated fibres: silk and wool. In Fundamentals of Natural Fibres and Textiles, 11(2), 153–178). Guo, C. (2021). Insect and animal-originated fibres: silk and wool. In Fundamentals of Natural Fibres and Textiles, 11(2), 153–178).
25.
go back to reference Haji, A., Ashraf, S., Nasiriboroumand, M., & Lievens, C. (2020). Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polymers, 21(3), 743–750.CrossRef Haji, A., Ashraf, S., Nasiriboroumand, M., & Lievens, C. (2020). Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polymers, 21(3), 743–750.CrossRef
26.
go back to reference Hao, W., Xu, J., Li, R., Zhao, X., Qiu, L., & Yang, W. (2019). Developing superhydrophobic rock wool for high-viscosity oil/ water separation. Chemical Engineering Journal, 36(8), 837–846.CrossRef Hao, W., Xu, J., Li, R., Zhao, X., Qiu, L., & Yang, W. (2019). Developing superhydrophobic rock wool for high-viscosity oil/ water separation. Chemical Engineering Journal, 36(8), 837–846.CrossRef
27.
go back to reference Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.PubMedPubMedCentralCrossRef Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.PubMedPubMedCentralCrossRef
28.
go back to reference Hearle, J. W. S. (2002). Physical properties of wool. Wool: Science and Technology, 34(5), 80–129. Hearle, J. W. S. (2002). Physical properties of wool. Wool: Science and Technology, 34(5), 80–129.
29.
go back to reference Holland, C., Numata, K., Rnjak‐Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 8(1), 1800465.CrossRef Holland, C., Numata, K., Rnjak‐Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 8(1), 1800465.CrossRef
30.
go back to reference Hsing, W. H., Lin, J. H., & Kao, K. T. (2007). The investigation of fiber carding performance with the application of static electricity to carded nonwoven fabric process. Journal of Materials Processing Technology, 192(4), 543–548.CrossRef Hsing, W. H., Lin, J. H., & Kao, K. T. (2007). The investigation of fiber carding performance with the application of static electricity to carded nonwoven fabric process. Journal of Materials Processing Technology, 192(4), 543–548.CrossRef
31.
go back to reference Hu, J., Xiong, Z., Liu, Y., & Lin, J. (2022). A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. International Journal of Biological Macromolecules, 204, 419–428.PubMedCrossRef Hu, J., Xiong, Z., Liu, Y., & Lin, J. (2022). A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. International Journal of Biological Macromolecules, 204, 419–428.PubMedCrossRef
32.
go back to reference Huson, M. G. (2018). Properties of wool. In Handbook of properties of textile and technical fibres, 11(2), 59–103.CrossRef Huson, M. G. (2018). Properties of wool. In Handbook of properties of textile and technical fibres, 11(2), 59–103.CrossRef
33.
go back to reference Ismail, S. A., Abou Taleb, M., Emran, M. A., Mowafi, S., Hashem, A. M., & El-Sayed, H. (2022). Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers, 19(10), 3697–3709.CrossRef Ismail, S. A., Abou Taleb, M., Emran, M. A., Mowafi, S., Hashem, A. M., & El-Sayed, H. (2022). Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers, 19(10), 3697–3709.CrossRef
34.
go back to reference Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., & Liu, Z. (2019). Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Advanced Functional Materials, 29(18), 1808241.CrossRef Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., & Liu, Z. (2019). Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Advanced Functional Materials, 29(18), 1808241.CrossRef
35.
go back to reference Johari, N., Moroni, L., & Samadikuchaksaraei, A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 134(2), 109–842. Johari, N., Moroni, L., & Samadikuchaksaraei, A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 134(2), 109–842.
36.
go back to reference Jóźwiak-Niedźwiedzka, D., & Fantilli, A. P. (2020). Wool-reinforced cement based composites. Materials, 13(16), 3590.PubMed Jóźwiak-Niedźwiedzka, D., & Fantilli, A. P. (2020). Wool-reinforced cement based composites. Materials, 13(16), 3590.PubMed
37.
go back to reference Karahan, H. A., Özdogğan, E., Demir, A., Koçum, I. C., Öktem, T., & Ayhan, H. (2009). Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers. Textile Research Journal, 79(14), 1260–1265.CrossRef Karahan, H. A., Özdogğan, E., Demir, A., Koçum, I. C., Öktem, T., & Ayhan, H. (2009). Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers. Textile Research Journal, 79(14), 1260–1265.CrossRef
38.
go back to reference Katashima, T., Malay, A. D., & Numata, K. (2019). Chemical modification and biosynthesis of silk-like polymers. Current Opinion in Chemical Engineering, 24(6), 61–68.CrossRef Katashima, T., Malay, A. D., & Numata, K. (2019). Chemical modification and biosynthesis of silk-like polymers. Current Opinion in Chemical Engineering, 24(6), 61–68.CrossRef
39.
go back to reference Kazakov, F., Sattarova, N., Rajabov, A., & Nodirova, M. (2021). A study of the study of the basic physico-mechanical and technological properties of camel wool fiber. Maтpицa нayчнoгo пoзнaния, (6–2), 31–40. Kazakov, F., Sattarova, N., Rajabov, A., & Nodirova, M. (2021). A study of the study of the basic physico-mechanical and technological properties of camel wool fiber. Maтpицa нayчнoгo пoзнaния, (6–2), 31–40.
40.
go back to reference Khusanbaev, A. M., Madaminov, J. Z., & Oxunjonov, Z. N. (2020). Effect of radiation on physical-mechanical properties of silk threads. Theoretical & Applied Science, 17(5), 209–212.CrossRef Khusanbaev, A. M., Madaminov, J. Z., & Oxunjonov, Z. N. (2020). Effect of radiation on physical-mechanical properties of silk threads. Theoretical & Applied Science, 17(5), 209–212.CrossRef
41.
go back to reference Kim, D. W., Lee, O. J., Kim, S. W., Ki, C. S., Chao, J. R., Yoo, H., & Park, C. H. (2015). Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 70, 48–56.PubMedCrossRef Kim, D. W., Lee, O. J., Kim, S. W., Ki, C. S., Chao, J. R., Yoo, H., & Park, C. H. (2015). Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 70, 48–56.PubMedCrossRef
42.
go back to reference Knuuttila, K. (2022). Biosynthesis of wool. 18(6),78–95. Knuuttila, K. (2022). Biosynthesis of wool. 18(6),78–95.
43.
go back to reference Kumar, A., Sawal, R. K., Narula, H. K., Kumar, S., & Kumar, R. (2019). Subjective and objective/ machine evaluation of wool luster in magra sheep vis-a-vis wool grading and animal selection. Journal of Natural Fibers, 16(5), 644–651.CrossRef Kumar, A., Sawal, R. K., Narula, H. K., Kumar, S., & Kumar, R. (2019). Subjective and objective/ machine evaluation of wool luster in magra sheep vis-a-vis wool grading and animal selection. Journal of Natural Fibers, 16(5), 644–651.CrossRef
44.
go back to reference Kumar, V., Dureja, H., & Garg, V. (2023). Traditional Use, Phytochemistry and pharmacology of ananas comosus (L.) Merr.(Family Bromeliaceae): An update. Current Nutrition & Food Science, 19(4), 428–441. Kumar, V., Dureja, H., & Garg, V. (2023). Traditional Use, Phytochemistry and pharmacology of ananas comosus (L.) Merr.(Family Bromeliaceae): An update. Current Nutrition & Food Science, 19(4), 428–441.
45.
go back to reference Li, W., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85(3), 102416.PubMedCrossRef Li, W., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85(3), 102416.PubMedCrossRef
46.
go back to reference Li, X., Zong, L., Wu, X., You, J., Li, M., & Li, C. (2018). Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 6(13), 3212–3219.CrossRef Li, X., Zong, L., Wu, X., You, J., Li, M., & Li, C. (2018). Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 6(13), 3212–3219.CrossRef
47.
go back to reference Liang, Y., Pakdel, E., Zhang, M., Sun, L., & Wang, X. (2019). Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160, 80–88.CrossRef Liang, Y., Pakdel, E., Zhang, M., Sun, L., & Wang, X. (2019). Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160, 80–88.CrossRef
48.
go back to reference Lin, Z., Huang, W., Zhang, J., Fan, J. S., & Yang, D. (2009). Solution structure of eggcase silk protein and its implications for silk fiber formation. Proceedings of the National Academy of Sciences, 106(22), 8906–8911.CrossRef Lin, Z., Huang, W., Zhang, J., Fan, J. S., & Yang, D. (2009). Solution structure of eggcase silk protein and its implications for silk fiber formation. Proceedings of the National Academy of Sciences, 106(22), 8906–8911.CrossRef
49.
go back to reference Ma, S. Y., Smagghe, G., & Xia, Q. Y. (2019). Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Science, 26(6), 964–972.PubMedCrossRef Ma, S. Y., Smagghe, G., & Xia, Q. Y. (2019). Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Science, 26(6), 964–972.PubMedCrossRef
50.
go back to reference Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223(21), 115023.PubMedCrossRef Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223(21), 115023.PubMedCrossRef
51.
go back to reference Murmu, S. B., Debnath, S., & Bhutia, C. N. (2023). Evaluation of the german angora rabbit fiber produced in the northeast region of india. Journal of Natural Fibers, 20(2), 2210323.CrossRef Murmu, S. B., Debnath, S., & Bhutia, C. N. (2023). Evaluation of the german angora rabbit fiber produced in the northeast region of india. Journal of Natural Fibers, 20(2), 2210323.CrossRef
52.
go back to reference Nawaz, N., Bakar, N. K. A., Mahmud, H. N. M. E., & Jamaludin, N. S. (2021). Molecularly imprinted polymers-based DNA biosensors. Analytical Biochemistry, 630(4), 114–328. Nawaz, N., Bakar, N. K. A., Mahmud, H. N. M. E., & Jamaludin, N. S. (2021). Molecularly imprinted polymers-based DNA biosensors. Analytical Biochemistry, 630(4), 114–328.
53.
go back to reference Nerger, B. A., Brun, P. T., & Nelson, C. M. (2019). Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft matter, 15(28), 5728–5738.PubMedPubMedCentralCrossRef Nerger, B. A., Brun, P. T., & Nelson, C. M. (2019). Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft matter, 15(28), 5728–5738.PubMedPubMedCentralCrossRef
55.
go back to reference Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). Use of mineral wool and its products in the construction of buildings and structures. Scientific Progress, 2(6), 1880–1882. Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). Use of mineral wool and its products in the construction of buildings and structures. Scientific Progress, 2(6), 1880–1882.
56.
go back to reference Patrucco, A., Visai, L., Fassina, L., Magenes, G., & Tonin, C. (2019). Keratin-based matrices from wool fibers and human hair. In Materials for Biomedical Engineering, 11(2), 375–403). Patrucco, A., Visai, L., Fassina, L., Magenes, G., & Tonin, C. (2019). Keratin-based matrices from wool fibers and human hair. In Materials for Biomedical Engineering, 11(2), 375–403).
57.
go back to reference Prajapati, C. D., Smith, E., Kane, F., & Shen, J. (2019). Selective enzymatic modification of wool/ polyester blended fabrics for surface patterning. Journal of Cleaner Production, 211(4), 909–921.CrossRef Prajapati, C. D., Smith, E., Kane, F., & Shen, J. (2019). Selective enzymatic modification of wool/ polyester blended fabrics for surface patterning. Journal of Cleaner Production, 211(4), 909–921.CrossRef
58.
go back to reference Qaxxorovich, N. Q., Juraevich, Y. N., Nozimjonovna, O. I., & Baxtiyorovna, N. B. (2021). The perspective directions for the development of sericulture. The American Journal of Engineering and Technology, 3(09), 24–27. Qaxxorovich, N. Q., Juraevich, Y. N., Nozimjonovna, O. I., & Baxtiyorovna, N. B. (2021). The perspective directions for the development of sericulture. The American Journal of Engineering and Technology, 3(09), 24–27.
59.
go back to reference Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91–106. Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91–106.
60.
go back to reference Raza, Z. A., & Khatoon, R. (2023). Lipolysis of poly (hydroxybutyrate)‐based films for the tailored release of hydrophilic proteins. Chemistry Select, 8(1), 202203417. Raza, Z. A., & Khatoon, R. (2023). Lipolysis of poly (hydroxybutyrate)‐based films for the tailored release of hydrophilic proteins. Chemistry Select, 8(1), 202203417.
61.
go back to reference Reddy, N., & Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology, 29(10), 490–498.PubMedCrossRef Reddy, N., & Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology29(10), 490–498.PubMedCrossRef
62.
go back to reference Rippon, J. A. (2013). The structure of wool. The Coloration of Wool and Other Keratin Fibres, 2(1),1–42. Rippon, J. A. (2013). The structure of wool. The Coloration of Wool and Other Keratin Fibres, 2(1),1–42.
63.
go back to reference Rosenman, G., Beker, P., Koren, I., Yevnin, M., Bank‐Srour, B., Mishina, E., & Semin, S. (2011). Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Journal of Peptide Science, 17(2), 75–87.PubMedCrossRef Rosenman, G., Beker, P., Koren, I., Yevnin, M., Bank‐Srour, B., Mishina, E., & Semin, S. (2011). Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Journal of Peptide Science, 17(2), 75–87.PubMedCrossRef
64.
go back to reference Sacchero, D., Roger, J. Q., Romero, S., Maurino, J., & Gonzalez, E. B. (2022). Community-based vicuña (Vicugna vicugna) shearing in the arid Puna of Argentina: Body weight and fiber traits obtained during the chakus. Small Ruminant Research, 216, 106829.CrossRef Sacchero, D., Roger, J. Q., Romero, S., Maurino, J., & Gonzalez, E. B. (2022). Community-based vicuña (Vicugna vicugna) shearing in the arid Puna of Argentina: Body weight and fiber traits obtained during the chakus. Small Ruminant Research, 216, 106829.CrossRef
65.
go back to reference Safer, A. M. (2017). A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. Journal of Nanomedicine and Nanotechnology, 8(2), 111–116. Safer, A. M. (2017). A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. Journal of Nanomedicine and Nanotechnology, 8(2), 111–116.
66.
go back to reference Saha, S., Kumar, P., Raj, S., & Sentisuba, B. M. (2022). Sericulture: management and practices of mulberry silkworm. International Journal of Pharmaceutical Research and Applications, 7(2), 35–46. Saha, S., Kumar, P., Raj, S., & Sentisuba, B. M. (2022). Sericulture: management and practices of mulberry silkworm. International Journal of Pharmaceutical Research and Applications, 7(2), 35–46.
67.
go back to reference Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 16(4), 427–433.PubMedCrossRef Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 16(4), 427–433.PubMedCrossRef
68.
go back to reference Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/ cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate Polymers, 86(2), 462–468.CrossRef Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/ cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate Polymers, 86(2), 462–468.CrossRef
69.
go back to reference Sheraliyevna, A. T. (2023). To study the chemical composition of woolen fabric. American Journal of Interdisciplinary Research and Development, 16(5), 21–24. Sheraliyevna, A. T. (2023). To study the chemical composition of woolen fabric. American Journal of Interdisciplinary Research and Development, 16(5), 21–24.
70.
go back to reference Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/ silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275.PubMedCrossRef Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/ silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275.PubMedCrossRef
71.
go back to reference Sun, J., Chen, J., Liu, K., & Zeng, H. (2021). Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7(5), 615–623.CrossRef Sun, J., Chen, J., Liu, K., & Zeng, H. (2021). Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7(5), 615–623.CrossRef
72.
go back to reference Sun, J., Li, B., Wang, F., Feng, J., Ma, C., Liu, K., & Zhang, H. (2021). Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. Chinese Chemical Society Chemistry, 3(6), 1669–1677. Sun, J., Li, B., Wang, F., Feng, J., Ma, C., Liu, K., & Zhang, H. (2021). Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. Chinese Chemical Society Chemistry, 3(6), 1669–1677.
73.
go back to reference Sun, J., Su, J., Ma, C., Göstl, R., Herrmann, A., Liu, K., & Zhang, H. (2020). Fabrication and mechanical properties of engineered protein‐based adhesives and fibers. Advanced Materials, 32(6), 1906360.CrossRef Sun, J., Su, J., Ma, C., Göstl, R., Herrmann, A., Liu, K., & Zhang, H. (2020). Fabrication and mechanical properties of engineered protein‐based adhesives and fibers. Advanced Materials, 32(6), 1906360.CrossRef
74.
go back to reference Tang, X., Liu, H., Shi, Z., Chen, Q., Kang, X., Wang, Y., & Zhao, P. (2020). Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1‐L in the posterior silk gland. Insect Molecular Biology, 29(5), 452–465.PubMedCrossRef Tang, X., Liu, H., Shi, Z., Chen, Q., Kang, X., Wang, Y., & Zhao, P. (2020). Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1‐L in the posterior silk gland. Insect Molecular Biology, 29(5), 452–465.PubMedCrossRef
75.
go back to reference Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: colored and luminescent. Advanced Materials, 24(11), 1388–1397.PubMedCrossRef Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: colored and luminescent. Advanced Materials, 24(11), 1388–1397.PubMedCrossRef
76.
go back to reference Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2019). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2019). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef
77.
go back to reference Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef
78.
go back to reference Thomas, S., & Thomas, J. (2021). A review on existing methods and classification algorithms used for sex determination of silkworm in sericulture. In Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), 567–579. Thomas, S., & Thomas, J. (2021). A review on existing methods and classification algorithms used for sex determination of silkworm in sericulture. In Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), 567–579.
79.
go back to reference Wan, S., Cheng, W., Li, J., Wang, F., Xing, X., Sun, J., & Liu, K. (2022). Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 15(10), 9192–9198.CrossRef Wan, S., Cheng, W., Li, J., Wang, F., Xing, X., Sun, J., & Liu, K. (2022). Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 15(10), 9192–9198.CrossRef
80.
go back to reference Wang, C. Y., Jiao, K., Yan, J. F., Wan, M. C., Wan, Q. Q., Breschi, L., & Niu, L. N. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 116(14), 100–712. Wang, C. Y., Jiao, K., Yan, J. F., Wan, M. C., Wan, Q. Q., Breschi, L., & Niu, L. N. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 116(14), 100–712.
81.
go back to reference Wang, X., Li, Y., & Zhong, C. (2015). Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 3(25), 4953–4958.PubMedCrossRef Wang, X., Li, Y., & Zhong, C. (2015). Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 3(25), 4953–4958.PubMedCrossRef
82.
go back to reference Wang, X., Li, Y., Liu, Q., Tan, X., Xie, X., Xia, Q., & Zhao, P. (2019). GC/ MS-based metabolomics analysis reveals active fatty acids biosynthesis in the filippi's gland of the silkworm, bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 105(11), 1–9.PubMed Wang, X., Li, Y., Liu, Q., Tan, X., Xie, X., Xia, Q., & Zhao, P. (2019). GC/ MS-based metabolomics analysis reveals active fatty acids biosynthesis in the filippi's gland of the silkworm, bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 105(11), 1–9.PubMed
83.
go back to reference Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., ... & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157. Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., ... & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157.
84.
go back to reference Wang, Y., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., & Wang, F. (2019). Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials science, 7(11), 4536–4546.PubMedCrossRef Wang, Y., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., & Wang, F. (2019). Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials science, 7(11), 4536–4546.PubMedCrossRef
85.
go back to reference Xu, L., Zhang, N., Wang, Q., Yuan, J., Yu, Y., Wang, P., & Fan, X. (2019). Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers and Polymers, 20, 261–270.CrossRef Xu, L., Zhang, N., Wang, Q., Yuan, J., Yu, Y., Wang, P., & Fan, X. (2019). Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers and Polymers, 20, 261–270.CrossRef
86.
go back to reference Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148(9), 1084–1097.PubMedCrossRef Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148(9), 1084–1097.PubMedCrossRef
87.
go back to reference Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2, 1–15.CrossRef Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2, 1–15.CrossRef
88.
go back to reference Zhang, L., Piipponen, M., Liu, Z., Li, D., Bian, X., Niu, G., & Xu Landén, N. (2023). Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death & Differentiation, 4(1),1–15. Zhang, L., Piipponen, M., Liu, Z., Li, D., Bian, X., Niu, G., & Xu Landén, N. (2023). Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death & Differentiation, 4(1),1–15.
89.
go back to reference Zhang, P., Li, J., Sun, J., Li, Y., Liu, K., Wang, F., & Su, J. (2022). Bioengineered protein fibers with anti‐freezing mechanical behaviors. Advanced Functional Materials, 32(48), 2209006.CrossRef Zhang, P., Li, J., Sun, J., Li, Y., Liu, K., Wang, F., & Su, J. (2022). Bioengineered protein fibers with anti‐freezing mechanical behaviors. Advanced Functional Materials, 32(48), 2209006.CrossRef
90.
go back to reference Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. American Chemical Society Chemical Biology. Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. American Chemical Society Chemical Biology.
91.
go back to reference Zhang, P., Wang, Q., Shen, J., Wang, P., Yuan, J., & Fan, X. (2019). Enzymatic Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, Assembly, and Biomedical thiol–ene click reaction: an eco-friendly approach for MPEGMA-grafted modification of wool fibers. American Chemical Society Sustainable Chemistry & Engineering, 7(15), 13446–13455. Zhang, P., Wang, Q., Shen, J., Wang, P., Yuan, J., & Fan, X. (2019). Enzymatic Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, Assembly, and Biomedical thiol–ene click reaction: an eco-friendly approach for MPEGMA-grafted modification of wool fibers. American Chemical Society Sustainable Chemistry & Engineering, 7(15), 13446–13455.
92.
go back to reference Zhang, W., & Fan, Y. (2021). Structure of keratin. Fibrous Proteins: Design, Synthesis, and Assembly, 11(2),41–53.CrossRef Zhang, W., & Fan, Y. (2021). Structure of keratin. Fibrous Proteins: Design, Synthesis, and Assembly, 11(2),41–53.CrossRef
93.
go back to reference Zhang, Y., Lu, L., Chen, Y., Wang, J., Chen, Y., Mao, C., & Yang, M. (2019). Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 7(12), 5232–5237.PubMedCrossRef Zhang, Y., Lu, L., Chen, Y., Wang, J., Chen, Y., Mao, C., & Yang, M. (2019). Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 7(12), 5232–5237.PubMedCrossRef
94.
go back to reference Zhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., & Hickford, J. G. (2021). Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes, 12(5), 625.PubMedPubMedCentralCrossRef Zhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., & Hickford, J. G. (2021). Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes, 12(5), 625.PubMedPubMedCentralCrossRef
95.
go back to reference Zhou, Q., Wang, W., Zhang, Y., Hurren, C. J., & Li, Q. (2020). Analyzing the thermal and hygral behavior of wool and its impact on fabric dimensional stability for wool processing and garment manufacturing. Textile Research Journal, 90(19–20), 2175–2183.CrossRef Zhou, Q., Wang, W., Zhang, Y., Hurren, C. J., & Li, Q. (2020). Analyzing the thermal and hygral behavior of wool and its impact on fabric dimensional stability for wool processing and garment manufacturing. Textile Research Journal, 90(19–20), 2175–2183.CrossRef
96.
go back to reference Zhou, Q., Wu, W., Zhou, S., Xing, T., Sun, G., & Chen, G. (2020). Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 382(14), 122988.CrossRef Zhou, Q., Wu, W., Zhou, S., Xing, T., Sun, G., & Chen, G. (2020). Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 382(14), 122988.CrossRef
97.
go back to reference Zhu, P., Li, D., Yang, Q., Su, P., Wang, H., Heimann, K., & Zhang, W. (2021). Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal. Research, 56, 102319.CrossRef Zhu, P., Li, D., Yang, Q., Su, P., Wang, H., Heimann, K., & Zhang, W. (2021). Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal. Research, 56, 102319.CrossRef
98.
go back to reference Zuber, M., Adeel, S., Rehman, F. U., Anjum, F., Muneer, M., Abdullah, M., & Zia, K. M. (2020). Influence of microwave radiation on dyeing of bio-mordanted silk fabric using neem bark (Azadirachta indica)-based tannin natural dye. Journal of Natural Fibers, 17(10), 1410–1422.CrossRef Zuber, M., Adeel, S., Rehman, F. U., Anjum, F., Muneer, M., Abdullah, M., & Zia, K. M. (2020). Influence of microwave radiation on dyeing of bio-mordanted silk fabric using neem bark (Azadirachta indica)-based tannin natural dye. Journal of Natural Fibers, 17(10), 1410–1422.CrossRef
Metadata
Title
Biosynthesis Application and Modification of Protein Fiber
Authors
Fazal-ur-Rehman
Aiman Fatima
Shahid Adeel
Muhammad Abdul Qayyum
Hamid Ali Tanveer
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_11

Premium Partners