Skip to main content
Top

2024 | OriginalPaper | Chapter

Ecological Effects of Biopolymers and Their Advantages for Textile Industry

Authors : Shumaila Kiran, Fazal ur Rehman, Sadia Javed, Shazia Abrar, Naila Mukhtar, Abdul Moied, Noman Maqsood Khan, Alina Javaid, Zaryab Rashid, Mubashar Hussain, Rabia Nawaz

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are considerable financial and environmental advantages to using biopolymers in the textile business. Biopolymers are polymers that are compostable and biodegradable and are produced from natural feedstock that includes plants, animals, and microbes. A significant amount of innovative textile material derived from sustainable polymeric resources, such as cellulose, etc. In particular, biopolymers generated from naturally occurring substances are environmentally friendly, harmless, and recyclable materials. The ability of biopolymers to lessen the volume of plastics waste produced by the textile sector is one of the key environmental advantages of these materials. Biopolymers can take the place of typical synthetic materials made from petroleum, which are not sustainable and can require several centuries to break down. The textile industry may lessen its influence on the environment and help to build a healthier era by employing biopolymers. The textile sector may potentially profit economically from the use of biopolymers. Financially speaking, biopolymers are more attractive in the modern world and much less costly of low cost with practical availability. They can be made at cheaper price like typical synthetic polymers, as they do not need petro feedstock and mostly generated using less energy. Yet, there are significant drawbacks to using biopolymers in the textile sector. For instance, biopolymers could not be as strong and durable as traditional synthetic polymers and might need more processing steps. In summary, employing biopolymers in the textile sector have the ability to have a substantial positive impact on both the environment and the economy. The significant ecological effects of biopolymers and their advantages for the textile industry will be covered in this chapter. The advantages of biopolymers in the textile industry for the environment and economy will be addressed through the use of sustainable methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdel-Halim, E. S., Abdel-Mohdy, F. A., Al-Deyab, S. S., & El-Newehy, M. H. (2010). Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydrate Polymers, 82(1), 202–208.CrossRef Abdel-Halim, E. S., Abdel-Mohdy, F. A., Al-Deyab, S. S., & El-Newehy, M. H. (2010). Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydrate Polymers82(1), 202–208.CrossRef
2.
go back to reference Abdellatif, F. H. H., & Abdellatif, M. M. (2021). Utilization of sustainable biopolymers in textile processing In Green Chemistry for Sustainable Textiles (pp. 453–469). Woodhead Publishing. Abdellatif, F. H. H., & Abdellatif, M. M. (2021). Utilization of sustainable biopolymers in textile processing In Green Chemistry for Sustainable Textiles (pp. 453–469). Woodhead Publishing.
3.
go back to reference Abotbina, W., Sapuan, S M., Sulaiman, S., & Ilyas, R. A. (2020). Review of corn starch biopolymer. In Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites (Vol. 2020, pp. 37–40) Serdang, Malaysia: Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia. Abotbina, W., Sapuan, S M., Sulaiman, S., & Ilyas, R. A. (2020). Review of corn starch biopolymer. In Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites (Vol. 2020, pp. 37–40) Serdang, Malaysia: Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia.
4.
go back to reference Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., & Bianco, G. (2021). Natural polymeric materials A solution to plastic pollution from the agro-food sector.Polymers, 13(1), 158 Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., & Bianco, G. (2021). Natural polymeric materials A solution to plastic pollution from the agro-food sector.Polymers13(1), 158
5.
go back to reference Akampumuza, O., Wambua, P. M., Ahmed, A., Li, W., & Qin, X. H. (2017). Review of the applications of biocomposites in the automotive industry. Polymer Composites, 38(11), 2553–2569CrossRef Akampumuza, O., Wambua, P. M., Ahmed, A., Li, W., & Qin, X. H. (2017). Review of the applications of biocomposites in the automotive industry. Polymer Composites38(11), 2553–2569CrossRef
6.
go back to reference Alonso, D., Gimeno, M., Sepúlveda-Sánchez, J. D., & Shirai, K. (2010). Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydrate Research, 345(6), 854–859.PubMedCrossRef Alonso, D., Gimeno, M., Sepúlveda-Sánchez, J. D., & Shirai, K. (2010). Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydrate Research345(6), 854–859.PubMedCrossRef
7.
go back to reference Altieri, M. A. (1998). Ecological impacts of industrial agriculture and the possibilities for truly sustainable farming Monthly Review, 50(3), 60CrossRef Altieri, M. A. (1998). Ecological impacts of industrial agriculture and the possibilities for truly sustainable farming Monthly Review50(3), 60CrossRef
8.
go back to reference Anastas, N. D., & Warner, J. C. (2005). The incorporation of hazard reduction as a chemical design criterion in green chemistry. Chemical Health & Safety, 12(2), 9–13. Anastas, N. D., & Warner, J. C. (2005). The incorporation of hazard reduction as a chemical design criterion in green chemistry. Chemical Health & Safety, 12(2), 9–13.
9.
go back to reference Araruna, F. B., Araruna, F. O. S., Pereira, L. P. L. A., Brito, M. C. A., Quelemes, P. V., de Araújo-Nobre, A. R., ... & Borges, A. C. R. (2020). Green syntheses of silver nanoparticles using babassu mesocarp starch (Attalea speciosa Mart. ex Spreng.) and their antimicrobial applications. Environmental Nanotechnology, Monitoring & Management, 13, 100281. Araruna, F. B., Araruna, F. O. S., Pereira, L. P. L. A., Brito, M. C. A., Quelemes, P. V., de Araújo-Nobre, A. R., ... & Borges, A. C. R. (2020). Green syntheses of silver nanoparticles using babassu mesocarp starch (Attalea speciosa Mart. ex Spreng.) and their antimicrobial applications. Environmental Nanotechnology, Monitoring & Management13, 100281.
10.
go back to reference Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T. A. T. (2021). Environmental impact of bio plastic use: A review. Heliyon, 7(9), e07918PubMedPubMedCentralCrossRef Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T. A. T. (2021). Environmental impact of bio plastic use: A review. Heliyon7(9), e07918PubMedPubMedCentralCrossRef
11.
go back to reference Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., ... & Lowry, G. V. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat ACS Nano, 13(5), 5291–5305. Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., ... & Lowry, G. V. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat ACS Nano13(5), 5291–5305.
12.
go back to reference Bahmani, S. A., East, G. C., & Holme, I. (2000). The application of chitosan in pigment printing. Coloration Technology, 116(3), 94–99.CrossRef Bahmani, S. A., East, G. C., & Holme, I. (2000). The application of chitosan in pigment printing. Coloration Technology116(3), 94–99.CrossRef
13.
go back to reference Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., ... & Bikiaris, D. N. (2021). Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers, 13(11), 1822.PubMedPubMedCentralCrossRef Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., ... & Bikiaris, D. N. (2021). Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers13(11), 1822.PubMedPubMedCentralCrossRef
14.
go back to reference Barone, J. R., & Schmidt, W. F. (2005). Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology, 65(2), 173–181.CrossRef Barone, J. R., & Schmidt, W. F. (2005). Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology65(2), 173–181.CrossRef
15.
go back to reference Bishop, G., Styles, D., & Lens, P. N. (2021). Environmental performance comparison of bio plastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions Resources, Conservation and Recycling, 168, 105451.CrossRef Bishop, G., Styles, D., & Lens, P. N. (2021). Environmental performance comparison of bio plastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions Resources, Conservation and Recycling168, 105451.CrossRef
16.
go back to reference Bouton, S., Hannon, E., Rogers, M., Swartz, S., Johnson, R., Gold, A., & Staples, M. (2016). The circular economy: Moving from theory to practice McKinsey centre for business and environment Special edition. Bouton, S., Hannon, E., Rogers, M., Swartz, S., Johnson, R., Gold, A., & Staples, M. (2016). The circular economy: Moving from theory to practice McKinsey centre for business and environment Special edition.
17.
go back to reference Brizga, J., Hubacek, K., & Feng, K. (2020).The unintended side effects of bio plastics: carbon, land, and water footprints. One Earth, 3(1), 45–53.CrossRef Brizga, J., Hubacek, K., & Feng, K. (2020).The unintended side effects of bio plastics: carbon, land, and water footprints. One Earth3(1), 45–53.CrossRef
18.
go back to reference Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International journal of biological macromolecules, 121, 905–912.PubMedCrossRef Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International journal of biological macromolecules121, 905–912.PubMedCrossRef
19.
go back to reference Calvo, S., Morales, A., Núñez-Cacho Utrilla, P., & Guaita Martínez, J. M. (2020). Addressing sustainable social change for all: Upcycled-based social creative businesses for the transformation of socio-technical regimes. International Journal of Environmental Research and Public Health, 17(7), 2527.PubMedPubMedCentralCrossRef Calvo, S., Morales, A., Núñez-Cacho Utrilla, P., & Guaita Martínez, J. M. (2020). Addressing sustainable social change for all: Upcycled-based social creative businesses for the transformation of socio-technical regimes. International Journal of Environmental Research and Public Health17(7), 2527.PubMedPubMedCentralCrossRef
20.
go back to reference Carpinteyro-Urban, S., Vaca, M., & Torres, L. G. (2012). Can vegetal biopolymers work as coagulant–flocculant aids in the treatment of high-load cosmetic industrial wastewaters?. Water, Air, & Soil Pollution, 223, 4925–4936.CrossRef Carpinteyro-Urban, S., Vaca, M., & Torres, L. G. (2012). Can vegetal biopolymers work as coagulant–flocculant aids in the treatment of high-load cosmetic industrial wastewaters?. Water, Air, & Soil Pollution223, 4925–4936.CrossRef
21.
go back to reference Carriere, J., Jones, J. P., & Broadbent, A. D. (1993). Decolourization of textile dye solutions. Carriere, J., Jones, J. P., & Broadbent, A. D. (1993). Decolourization of textile dye solutions.
22.
go back to reference Causey, D., Trimble, J., Hallwachs, W., Brooks, D., & Janzen, D. (2003).Migratory birds and the spread of West Nile. Science, 299(5608), 821–821.PubMedCrossRef Causey, D., Trimble, J., Hallwachs, W., Brooks, D., & Janzen, D. (2003).Migratory birds and the spread of West Nile. Science299(5608), 821–821.PubMedCrossRef
23.
go back to reference Cornell, D. D. (2007). Biopolymers in the existing postconsumer plastics recycling stream. Journal of Polymers and the Environment, 15(4), 295–299.CrossRef Cornell, D. D. (2007). Biopolymers in the existing postconsumer plastics recycling stream. Journal of Polymers and the Environment15(4), 295–299.CrossRef
24.
go back to reference Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers'(lysozyme, gum Arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482.PubMedCrossRef Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers'(lysozyme, gum Arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules138, 473–482.PubMedCrossRef
25.
go back to reference Damak, M., de Ruiter, J., Panat, S., & Varanasi, K. K. (2022). Dynamics of an impacting emulsion droplet. Science Advances, 8(11), eabl7160. Damak, M., de Ruiter, J., Panat, S., & Varanasi, K. K. (2022). Dynamics of an impacting emulsion droplet. Science Advances8(11), eabl7160.
26.
go back to reference Dissanayake, D. G. K., Weerasinghe, D. U., Thebuwanage, L. M., & Bandara, U. A. A. N. (2021) An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber.Journal of Building Engineering, 33, 101606. Dissanayake, D. G. K., Weerasinghe, D. U., Thebuwanage, L. M., & Bandara, U. A. A. N. (2021) An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber.Journal of Building Engineering33, 101606.
27.
go back to reference Doi, Y., & Steinbüchel, A.(Eds.). (2002). Biopolymers:[biology, chemistry, biotechnology, applications]. 4, Polyesters: 3. Applications and Commercial Products Wiley-Vch. Doi, Y., & Steinbüchel, A.(Eds.). (2002). Biopolymers:[biology, chemistry, biotechnology, applications]. 4, Polyesters: 3. Applications and Commercial Products Wiley-Vch.
28.
go back to reference Dokić, L., Dapčević, T., Krstonošić, V., Dokić, P., & Hadnađev, M. (2010). Rheological characterization of corn starch isolated by alkali method. Food Hydrocolloids, 24(2–3), 172–177.CrossRef Dokić, L., Dapčević, T., Krstonošić, V., Dokić, P., & Hadnađev, M. (2010). Rheological characterization of corn starch isolated by alkali method. Food Hydrocolloids24(2–3), 172–177.CrossRef
29.
go back to reference Egan, J., & Salmon, S. (2022). Strategies and progress in synthetic textile fiber biodegradability. SN Applied Sciences, 4, 1–36.CrossRef Egan, J., & Salmon, S. (2022). Strategies and progress in synthetic textile fiber biodegradability. SN Applied Sciences4, 1–36.CrossRef
30.
go back to reference Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 284, 124701.CrossRef Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production284, 124701.CrossRef
31.
go back to reference Enescu, D. (2008). Use of chitosan in surface modification of textile materials. Roumanian Biotechnological Letters, 13(6), 4037–4048. Enescu, D. (2008). Use of chitosan in surface modification of textile materials. Roumanian Biotechnological Letters13(6), 4037–4048.
32.
go back to reference Fatehi, H., Abtahi, S. M., Hashemolhosseini, H., & Hejazi, S. M. (2018). A novel study on using protein based biopolymers in soil strengthening. Construction and Building Materials, 167, 813–821.CrossRef Fatehi, H., Abtahi, S. M., Hashemolhosseini, H., & Hejazi, S. M. (2018). A novel study on using protein based biopolymers in soil strengthening. Construction and Building Materials167, 813–821.CrossRef
33.
go back to reference Fiksel, L. (2022). Environmental and health impacts of biobased polymers (Doctoral dissertation, Yale University). Fiksel, L. (2022). Environmental and health impacts of biobased polymers (Doctoral dissertation, Yale University).
34.
go back to reference Gamage, A., Liyanapathiranage, A., Manamperi, A., Gunathilake, C., Mani, S., Merah, O., & Madhujith, T. (2022). Applications of starch biopolymers for a sustainable modern agriculture. Sustainability, 14(10), 6085CrossRef Gamage, A., Liyanapathiranage, A., Manamperi, A., Gunathilake, C., Mani, S., Merah, O., & Madhujith, T. (2022). Applications of starch biopolymers for a sustainable modern agriculture. Sustainability14(10), 6085CrossRef
35.
go back to reference Garud, A., & Garud, N. (2010). Preparation and evaluation of chitosan microcapsules of metronidazole using tripolyphosphate cross-linking method. Dhaka University Journal of Pharmaceutical Sciences, 9(2), 125–130.CrossRef Garud, A., & Garud, N. (2010). Preparation and evaluation of chitosan microcapsules of metronidazole using tripolyphosphate cross-linking method. Dhaka University Journal of Pharmaceutical Sciences9(2), 125–130.CrossRef
36.
go back to reference Gowthaman, N. S. K., Lim, H. N., Sreeraj, T. R., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351–372), Elsevier. Gowthaman, N. S. K., Lim, H. N., Sreeraj, T. R., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351–372), Elsevier.
37.
go back to reference Goynes, W. R., Moreau, J. P., Delucca, A. J., & Ingber, B. F. (1995). Biodeterioration of nonwoven fabrics. Textile research Journal, 65(8), 489–494.CrossRef Goynes, W. R., Moreau, J. P., Delucca, A. J., & Ingber, B. F. (1995). Biodeterioration of nonwoven fabrics. Textile research Journal65(8), 489–494.CrossRef
38.
go back to reference Guimarães, J. L., Wypych, F., Saul, C. K., Ramos, L. P., & Satyanarayana, K. G. (2010). Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers, 80(1), 130–138.CrossRef Guimarães, J. L., Wypych, F., Saul, C. K., Ramos, L. P., & Satyanarayana, K. G. (2010). Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers80(1), 130–138.CrossRef
39.
go back to reference Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199.PubMedCrossRef Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials344, 179–199.PubMedCrossRef
40.
go back to reference Heinrich, L. A. (2019). Future opportunities, for bio-based adhesives–advantages beyond renewability. Green Chemistry, 21(8), 1866–1888.CrossRef Heinrich, L. A. (2019). Future opportunities, for bio-based adhesives–advantages beyond renewability. Green Chemistry21(8), 1866–1888.CrossRef
41.
go back to reference Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898–1907.CrossRef Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability98(9), 1898–1907.CrossRef
42.
go back to reference Ibrahim, N. A., El-Badry, K., Eid, B. M., & Hassan, T. M. (2011). A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydrate Polymers, 83(1), 116–121.CrossRef Ibrahim, N. A., El-Badry, K., Eid, B. M., & Hassan, T. M. (2011). A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydrate Polymers83(1), 116–121.CrossRef
43.
go back to reference Ibrahim, M. S., Sani, N., Adamu, M., & Abubakar, M. K. (2018). Biodegradable polymers for sustainable environmental and economic development. MOJ Biorg Org Chem, 2, 192–194. Ibrahim, M. S., Sani, N., Adamu, M., & Abubakar, M. K. (2018). Biodegradable polymers for sustainable environmental and economic development. MOJ Biorg Org Chem2, 192–194.
44.
go back to reference Ibrahim, M. S., Sani, N., Adamu, M., & Abubakar, M. K. (2018). Biodegradable polymers for sustainable environmental and economic development MOJ Biorg. Org. Chem, 2, 192–194. Ibrahim, M. S., Sani, N., Adamu, M., & Abubakar, M. K. (2018). Biodegradable polymers for sustainable environmental and economic development MOJ Biorg. Org. Chem2, 192–194.
45.
go back to reference Islam, S., Ma, M., Hossain, M. N., Ganguli, S., & Song, Z. (2020). Climate change and food security: A review of current and future perspective of China and Bangladesh. Indonesian Journal of Environmental Management and Sustainability, 4(4), 90–101. Islam, S., Ma, M., Hossain, M. N., Ganguli, S., & Song, Z. (2020). Climate change and food security: A review of current and future perspective of China and Bangladesh. Indonesian Journal of Environmental Management and Sustainability, 4(4), 90–101.
47.
go back to reference Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers in textile industries. In Biopolymers and Their Industrial Applications (ppk. 193–218), Elsevier. Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers in textile industries. In Biopolymers and Their Industrial Applications (ppk. 193–218), Elsevier.
48.
go back to reference Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60–70.CrossRef Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research3(2), 60–70.CrossRef
49.
go back to reference Kakkalameli, S., Daphedar, A. B., Faniband, B., Sharma, S., Nadda, A. K., Ferreira, L. F. R., ... & Mulla, S. I. (2022). Biopolymers and Environment. In Biopolymers: Recent Updates, Challenges and Opportunities (pp. 19–33). Cham: Springer International Publishing.CrossRef Kakkalameli, S., Daphedar, A. B., Faniband, B., Sharma, S., Nadda, A. K., Ferreira, L. F. R., ... & Mulla, S. I. (2022). Biopolymers and Environment. In Biopolymers: Recent Updates, Challenges and Opportunities (pp. 19–33). Cham: Springer International Publishing.CrossRef
50.
go back to reference Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review. Polymer Degradation and Stability, 137, 122–130CrossRef Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review. Polymer Degradation and Stability137, 122–130CrossRef
51.
go back to reference Karthik, T., & Rathinamoorthy, R. (2018). Sustainable biopolymers in textiles: An overview Handbook of Ecomaterials, 1–27. Karthik, T., & Rathinamoorthy, R. (2018). Sustainable biopolymers in textiles: An overview Handbook of Ecomaterials, 1–27.
52.
go back to reference Kiran, S., Rafique, M. A., Iqbal, S., Nosheen, S., Naz, S., & Rasheed, A. (2020). Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environmental Science and Pollution Research, 27, 32998–33007.PubMedCrossRef Kiran, S., Rafique, M. A., Iqbal, S., Nosheen, S., Naz, S., & Rasheed, A. (2020). Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environmental Science and Pollution Research27, 32998–33007.PubMedCrossRef
53.
go back to reference Kiran, S., Albargi, H. B., Afzal, G., Aimun, U., Anjum, M. N., Qadir, M. B., ... & Abdullah, M. M. (2023). A zadirachta indica-assisted green synthesis of magnesium oxide nanoparticles for degradation of Reactive Red 195 dye: A sustainable environmental remedial approach. Applied Water Science, 13(10), 193. Kiran, S., Albargi, H. B., Afzal, G., Aimun, U., Anjum, M. N., Qadir, M. B., ... & Abdullah, M. M. (2023). A zadirachta indica-assisted green synthesis of magnesium oxide nanoparticles for degradation of Reactive Red 195 dye: A sustainable environmental remedial approach. Applied Water Science, 13(10), 193.
54.
go back to reference Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.PubMedCrossRef Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition44(22), 3358–3393.PubMedCrossRef
55.
go back to reference Koh, J. (2011). Dyeing of cellulosic fibres. In Handbook of textile and industrial dyeing (pp. 129–146), Woodhead Publishing. Koh, J. (2011). Dyeing of cellulosic fibres. In Handbook of textile and industrial dyeing (pp. 129–146), Woodhead Publishing.
56.
go back to reference Kong, L., Ziegler, G. R., & Bhosale, R. (2011). Fibers spun from polysaccharides. Handbook of Carbohydrate Polymers: Development, Properties and Applications, 1–43. Kong, L., Ziegler, G. R., & Bhosale, R. (2011). Fibers spun from polysaccharides. Handbook of Carbohydrate Polymers: Development, Properties and Applications, 1–43.
57.
go back to reference Koszewska, M. (2018). Circular economy—Challenges for the textile and clothing industry. Autex Research Journal, 18(4), 337–347.CrossRef Koszewska, M. (2018). Circular economy—Challenges for the textile and clothing industry. Autex Research Journal18(4), 337–347.CrossRef
58.
go back to reference Kundu, S. C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., ... & Ghosh, A. K. (2012). Nonmulberry silk biopolymers. Biopolymers, 97(6), 455–467.PubMedCrossRef Kundu, S. C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., ... & Ghosh, A. K. (2012). Nonmulberry silk biopolymers. Biopolymers97(6), 455–467.PubMedCrossRef
59.
go back to reference Kuppens, T., Cornelissen, T., Carleer, R., Yperman, J., Schreurs, S., Jans, M., & Thewys, T. (2010). Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams. Journal of Environmental Management, 91(12), 2736–2747PubMedCrossRef Kuppens, T., Cornelissen, T., Carleer, R., Yperman, J., Schreurs, S., Jans, M., & Thewys, T. (2010). Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams. Journal of Environmental Management91(12), 2736–2747PubMedCrossRef
60.
go back to reference Law, K. L., Morét-Ferguson, S., Maximenko, N. A., Proskurowski, G., Peacock, E. E., Hafner, J., & Reddy, C. M. (2010). Plastic accumulation in the North Atlantic subtropical gyre. Science, 329(5996), 1185–1188.PubMedCrossRef Law, K. L., Morét-Ferguson, S., Maximenko, N. A., Proskurowski, G., Peacock, E. E., Hafner, J., & Reddy, C. M. (2010). Plastic accumulation in the North Atlantic subtropical gyre. Science329(5996), 1185–1188.PubMedCrossRef
61.
go back to reference Law, R. C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application. In Macromolecular Symposia (Vol. 208, No. 1, pp. 255–266), Weinheim: WILEY‐VCH Verlag. Law, R. C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application. In Macromolecular Symposia (Vol. 208, No. 1, pp. 255–266), Weinheim: WILEY‐VCH Verlag.
62.
go back to reference Li, J., He, J., & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles. International Journal of Biological Macromolecules, 94, 466–473.PubMedCrossRef Li, J., He, J., & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles. International Journal of Biological Macromolecules94, 466–473.PubMedCrossRef
63.
go back to reference Lim, S. H., & Hudson, S. M. (2003). Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science, Part C: Polymer Reviews, 43(2), 223–269.CrossRef Lim, S. H., & Hudson, S. M. (2003). Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science, Part C: Polymer Reviews43(2), 223–269.CrossRef
64.
go back to reference Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3, 77–96.CrossRef Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research3, 77–96.CrossRef
65.
go back to reference Maniglia, B. C., Castanha, N., Le-Bail, P., Le-Bail, A., & Augusto, P. E. (2021). Starch modification through environmentally friendly alternatives: A review. Critical Reviews in Food Science and Nutrition, 61(15), 2482–2505.PubMedCrossRef Maniglia, B. C., Castanha, N., Le-Bail, P., Le-Bail, A., & Augusto, P. E. (2021). Starch modification through environmentally friendly alternatives: A review. Critical Reviews in Food Science and Nutrition61(15), 2482–2505.PubMedCrossRef
66.
go back to reference Massella, D., Giraud, S., Guan, J., Ferri, A., & Salaün, F. (2019). Textiles for health: A review of textile fabrics treated with chitosan microcapsules. Environmental Chemistry Letters, 17, 1787–1800.CrossRef Massella, D., Giraud, S., Guan, J., Ferri, A., & Salaün, F. (2019). Textiles for health: A review of textile fabrics treated with chitosan microcapsules. Environmental Chemistry Letters17, 1787–1800.CrossRef
67.
go back to reference Mazotto, A. M., de Ramos Silva, J., de Brito, L. A. A., Rocha, N. U., & de Souza Soares, A. (2021). How can microbiology help to improve sustainability in the fashion industry? Environmental Technology & Innovation, 23, 101760CrossRef Mazotto, A. M., de Ramos Silva, J., de Brito, L. A. A., Rocha, N. U., & de Souza Soares, A. (2021). How can microbiology help to improve sustainability in the fashion industry? Environmental Technology & Innovation23, 101760CrossRef
68.
go back to reference Montecinos Espinoza, S. D. L. A., Ascazuri, M., Achaga, J., Viduzzi, G., & Tognana, S. A (2019). Biopolymers to mitigate the environmental impact. INGLOMAYOR. Section A, 17, 275–286. Montecinos Espinoza, S. D. L. A., Ascazuri, M., Achaga, J., Viduzzi, G., & Tognana, S. A (2019). Biopolymers to mitigate the environmental impact. INGLOMAYOR. Section A, 17, 275–286.
69.
go back to reference Mülhaupt, R. (2013). Green polymer chemistry and bio‐based plastics: dreams and reality. Macromolecular Chemistry and Physics, 214(2), 159–174.CrossRef Mülhaupt, R. (2013). Green polymer chemistry and bio‐based plastics: dreams and reality. Macromolecular Chemistry and Physics214(2), 159–174.CrossRef
70.
go back to reference Nakasaki, K., Ohtaki, A., & Takano, H. (2000). Biodegradable plastic reduces ammonia emission during composting. Polymer Degradation and Stability, 70(2), 185–188.CrossRef Nakasaki, K., Ohtaki, A., & Takano, H. (2000). Biodegradable plastic reduces ammonia emission during composting. Polymer Degradation and Stability70(2), 185–188.CrossRef
71.
go back to reference Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196.PubMedPubMedCentralCrossRef Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances11(28), 17151–17196.PubMedPubMedCentralCrossRef
72.
go back to reference Niaounakis, M. (2014) Biopolymers: Processing and Products, William Andrew, Elsevier: Kidlington, UK. Niaounakis, M. (2014) Biopolymers: Processing and Products, William Andrew, Elsevier: Kidlington, UK.
73.
go back to reference Niaounakis, M. (2015). Definitions of terms and types of biopolymers. Biopolymer’s: Applications and Trends, 1, 1–90 Niaounakis, M. (2015). Definitions of terms and types of biopolymers. Biopolymer’s: Applications and Trends1, 1–90
74.
go back to reference Niinimäki, K. (2015). Ethical foundations in sustainable fashion. Textiles and Clothing Sustainability, 1, 1–11. Niinimäki, K. (2015). Ethical foundations in sustainable fashion. Textiles and Clothing Sustainability, 1, 1–11.
75.
go back to reference Nussinovitch, A. (1997). Hydrocolloid applications: Gum technology in the Food and other Industries, London: Blackie Academic & Professional, 134–137.CrossRef Nussinovitch, A. (1997). Hydrocolloid applications: Gum technology in the Food and other Industries, London: Blackie Academic & Professional, 134–137.CrossRef
76.
go back to reference Ogunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal, 108, 570–581.CrossRef Ogunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal108, 570–581.CrossRef
77.
go back to reference Park, Y. K., Kim, M. H., Park, S. C., Cheong, H. S., Jang, M. K., Nah, J. W., & Hahm, K. S. (2008). Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. Journal of Microbiology and Biotechnology, 18(10), 1729–1734.PubMed Park, Y. K., Kim, M. H., Park, S. C., Cheong, H. S., Jang, M. K., Nah, J. W., & Hahm, K. S. (2008). Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. Journal of Microbiology and Biotechnology18(10), 1729–1734.PubMed
78.
go back to reference Patel, S., & Goyal, A. (2015). Applications of natural polymer gum arabic: a review. International Journal of Food Properties, 18(5), 986–998.CrossRef Patel, S., & Goyal, A. (2015). Applications of natural polymer gum arabic: a review. International Journal of Food Properties18(5), 986–998.CrossRef
79.
80.
go back to reference Patti, A., Costa, F., Perrotti, M., Barbarino, D., & Acierno, D. (2021). Careful Use of Silica Nanoparticles in the Textile Treatment for Potential Large-scale Production. Chemical Engineering Transactions, 84, 91–96. Patti, A., Costa, F., Perrotti, M., Barbarino, D., & Acierno, D. (2021). Careful Use of Silica Nanoparticles in the Textile Treatment for Potential Large-scale Production. Chemical Engineering Transactions84, 91–96.
81.
go back to reference Patti, A., & Acierno, D. (2018) .Effect of waterborne polyurethane on mechanical properties of impregnated fabrics.In AIP Conference Proceedings (Vol. 1981, No. 1, p. 020139), AIP Publishing LLC Patti, A., & Acierno, D. (2018) .Effect of waterborne polyurethane on mechanical properties of impregnated fabrics.In AIP Conference Proceedings (Vol. 1981, No. 1, p. 020139), AIP Publishing LLC
82.
go back to reference Patti, A., & Acierno, D (2022).Towards the sustainability of the plastic industry through biopolymers: properties and potential applications to the textiles world.Polymers, 14(4), 692. Patti, A., & Acierno, D (2022).Towards the sustainability of the plastic industry through biopolymers: properties and potential applications to the textiles world.Polymers14(4), 692.
83.
go back to reference Payne, A. (2015). Open-and closed-loop recycling of textile and apparel products. In Handbook of life cycle assessment (LCA) of textiles and clothing (pp. 103–123), Woodhead Publishing. Payne, A. (2015). Open-and closed-loop recycling of textile and apparel products. In Handbook of life cycle assessment (LCA) of textiles and clothing (pp. 103–123), Woodhead Publishing.
84.
go back to reference Peelman, N., Ragaert, P., Ragaert, K., De Meulenaer, B., Devlieghere, F., & Cardon, L. (2015). Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science, 132(48), 1–15.CrossRef Peelman, N., Ragaert, P., Ragaert, K., De Meulenaer, B., Devlieghere, F., & Cardon, L. (2015). Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science132(48), 1–15.CrossRef
85.
go back to reference Peesan, M., Rujiravanit, R. & Supaphol, P. (2006). Electrospinning of hexanoyl chitosan/polylactide blends. Journal of Biomaterials Science, Polymer Edition, 17(5), 547–565.PubMedCrossRef Peesan, M., Rujiravanit, R. & Supaphol, P. (2006). Electrospinning of hexanoyl chitosan/polylactide blends. Journal of Biomaterials Science, Polymer Edition17(5), 547–565.PubMedCrossRef
86.
go back to reference Peychev, B., & Vasileva, P. (2021). Novel starch-mediated synthesis of Au/ZnO nanocrystals and their photocatalytic properties. Heliyon, 7(6), –07402. Peychev, B., & Vasileva, P. (2021). Novel starch-mediated synthesis of Au/ZnO nanocrystals and their photocatalytic properties. Heliyon7(6), –07402.
87.
go back to reference Pillai, C. K., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641–678. Pillai, C. K., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641–678.
88.
go back to reference Polman, E. M., Gruter, G. J. M., Parsons, J. R., & Tietema, A. (2021). Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753, 141953.PubMedCrossRef Polman, E. M., Gruter, G. J. M., Parsons, J. R., & Tietema, A. (2021). Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment753, 141953.PubMedCrossRef
89.
go back to reference Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 57(2), 171–180.CrossRef Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International57(2), 171–180.CrossRef
90.
go back to reference Qureshi, M. A. U. R., Arshad, N., Rasool, A., Islam, A., Rizwan, M., Haseeb, M., ... & Bilal, M. (2022). Chitosan and Carrageenan‐Based Biocompatible Hydrogel Platforms for Cosmeceutical, Drug Delivery, and Biomedical Applications. Starch‐Stärke, 2200052. Qureshi, M. A. U. R., Arshad, N., Rasool, A., Islam, A., Rizwan, M., Haseeb, M., ... & Bilal, M. (2022). Chitosan and Carrageenan‐Based Biocompatible Hydrogel Platforms for Cosmeceutical, Drug Delivery, and Biomedical Applications. Starch‐Stärke, 2200052.
91.
go back to reference Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., ... & Azam, M. (2023). Plant-assisted synthesis and characterization of MnO2 nanoparticles for removal of crystal violet dye: an environmental remedial approach. Environmental Science and Pollution Research, 1–12. Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., ... & Azam, M. (2023). Plant-assisted synthesis and characterization of MnO2 nanoparticles for removal of crystal violet dye: an environmental remedial approach. Environmental Science and Pollution Research, 1–12.
92.
go back to reference Raj, S. N., Lavanya, S. N., Sudisha, J., & Shetty, H. S. (2011). Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection. Biopolymers: Biomédical and Environmental Applications, 459–481. Raj, S. N., Lavanya, S. N., Sudisha, J., & Shetty, H. S. (2011). Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection. Biopolymers: Biomédical and Environmental Applications, 459–481.
93.
go back to reference Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, 352–358.PubMedCrossRef Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules111, 352–358.PubMedCrossRef
94.
go back to reference Rasool, A., Kiran, S., Gulzar, T., Abrar, S., Ghaffar, A., Shahid, M., Nosheen, S., Naz, S. (2023). Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: A sustainable environmental cleaner approach. Journal of Cleaner Production, 398, 136616. Rasool, A., Kiran, S., Gulzar, T., Abrar, S., Ghaffar, A., Shahid, M., Nosheen, S., Naz, S. (2023). Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: A sustainable environmental cleaner approach. Journal of Cleaner Production, 398, 136616.
95.
go back to reference Rendón-Villalobos, R., Ortíz-Sánchez, A., Tovar-Sánchez, E., & Flores-Huicochea, E. (2016). The role of biopolymers in obtaining environmentally friendly materials. Composites from Renewable and Sustainable Materials, 8, 151–159. Rendón-Villalobos, R., Ortíz-Sánchez, A., Tovar-Sánchez, E., & Flores-Huicochea, E. (2016). The role of biopolymers in obtaining environmentally friendly materials. Composites from Renewable and Sustainable Materials8, 151–159.
96.
go back to reference Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.CrossRef Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science31(7), 603–632.CrossRef
97.
go back to reference Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., & Jolliet, O. (2015). Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. Journal of Cleaner Production, 86, 132–145.CrossRef Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., & Jolliet, O. (2015). Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. Journal of Cleaner Production86, 132–145.CrossRef
98.
go back to reference Roy Choudhury, A. K. (2014). Environmental impacts of the textile industry and its assessment through life cycle assessment. Roadmap to Sustainable Textiles and Cclothing: Environmental and Social Aspects of Textiles and Clothing Supply Chain, 1–39. Roy Choudhury, A. K. (2014). Environmental impacts of the textile industry and its assessment through life cycle assessment. Roadmap to Sustainable Textiles and Cclothing: Environmental and Social Aspects of Textiles and Clothing Supply Chain, 1–39.
99.
go back to reference Şahan, G., Demir, A., & Gökçe, Y. (2016). Improving certain properties of wool fibers by applying chitosan nanoparticles and atmospheric plasma treatment. Fibers and Polymers, 17, 1007–1012. Şahan, G., Demir, A., & Gökçe, Y. (2016). Improving certain properties of wool fibers by applying chitosan nanoparticles and atmospheric plasma treatment. Fibers and Polymers17, 1007–1012.
100.
go back to reference Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2012). A new approach to use Arenga pinnata as sustainable biopolymer: Effects of plasticizers on physical properties. Procedia Chemistry, 4, 254–259.CrossRef Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2012). A new approach to use Arenga pinnata as sustainable biopolymer: Effects of plasticizers on physical properties. Procedia Chemistry4, 254–259.CrossRef
101.
go back to reference Sajn, N. (2019). Environmental Impact of the Textile and Clothing Industry eWhat Consumers Need to Know. Journal of European Parliamentary Research Service: European Union, 1–11 Sajn, N. (2019). Environmental Impact of the Textile and Clothing Industry eWhat Consumers Need to Know. Journal of European Parliamentary Research Service: European Union, 1–11
102.
go back to reference Salaün, F (2016). Microencapsulation technology for smart textile coatings. In Active Coatings for Smart Textiles (pp. 179–220), Woodhead Publishing. Salaün, F (2016). Microencapsulation technology for smart textile coatings. In Active Coatings for Smart Textiles (pp. 179–220), Woodhead Publishing.
103.
go back to reference Samy, S., & Hebeish, A. A. (2011). Eco-friendly pretreatment of cellulosic fabrics with chitosan and its influence on dyeing efficiency. In Natural dyes. IntechOpen. Samy, S., & Hebeish, A. A. (2011). Eco-friendly pretreatment of cellulosic fabrics with chitosan and its influence on dyeing efficiency. In Natural dyes. IntechOpen.
104.
go back to reference São Pedro, A., Cabral-Albuquerque, E., Ferreira, D., & Sarmento, B. (2009) Chitosan: an option for development of essential oil delivery systems for oral cavity care? Carbohydrate polymers, 76(4), 501–508 São Pedro, A., Cabral-Albuquerque, E., Ferreira, D., & Sarmento, B. (2009) Chitosan: an option for development of essential oil delivery systems for oral cavity care? Carbohydrate polymers76(4), 501–508
105.
go back to reference Saratale, R. G., Cho, S. K., Saratale, G. D., Kadam, A. A., Ghodake, G. S., Kumar, M., ... & Shin, H. S. (2021).A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bio resource technology, 325, 124685 Saratale, R. G., Cho, S. K., Saratale, G. D., Kadam, A. A., Ghodake, G. S., Kumar, M., ... & Shin, H. S. (2021).A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bio resource technology325, 124685
106.
go back to reference Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., ... & Obermeyer, A. C. (2021) Bioengineering textiles across scales for a sustainable circular economy Chem, 7(11), 2913–2926. Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., ... & Obermeyer, A. C. (2021) Bioengineering textiles across scales for a sustainable circular economy Chem7(11), 2913–2926.
107.
go back to reference Shahid, M., & Mohammad, F (2013) Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review. Industrial & Engineering Chemistry Research, 52(15), 5245–5260.CrossRef Shahid, M., & Mohammad, F (2013) Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review. Industrial & Engineering Chemistry Research52(15), 5245–5260.CrossRef
108.
go back to reference Sharma, R. (2005). Guar gum grafting and its application in textile. Asian Journal of Experimental Science, 19(2), 77–81. Sharma, R. (2005). Guar gum grafting and its application in textile. Asian Journal of Experimental Science, 19(2), 77–81.
109.
go back to reference Sharma, S., Kumar, A., Adelere, I. A., & Latee, A (2019). Keratin as a protein biopolymer. Springer Series on Polymer and Composite Materials. Sharma, S., Kumar, A., Adelere, I. A., & Latee, A (2019). Keratin as a protein biopolymer. Springer Series on Polymer and Composite Materials.
110.
go back to reference Sharma, S., Sharma, B., Manral, A., Bajpai, P. K., & Jain, P. (2021). Biopolymers in the automotive and adhesive industries In Biopolymers and their Industrial Applications (pp. 261–280), Elsevier. Sharma, S., Sharma, B., Manral, A., Bajpai, P. K., & Jain, P. (2021). Biopolymers in the automotive and adhesive industries In Biopolymers and their Industrial Applications (pp. 261–280), Elsevier.
111.
go back to reference Shirvan, A. R., Shakeri, M., & Bashari, A. (2019). Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 107–133. Shirvan, A. R., Shakeri, M., & Bashari, A. (2019). Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 107–133.
112.
go back to reference Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1–3), 107–115.CrossRef Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability59(1–3), 107–115.CrossRef
113.
go back to reference Stegmaier, T., Wunderlich, W., Hager, T., Siddique, A. B., Sarsour, J., & Planck, H. (2008). Chitosan–A sizing agent in fabric production–Development and ecological evaluation. CLEAN–Soil, Air, Water, 36(3), 279–286. Stegmaier, T., Wunderlich, W., Hager, T., Siddique, A. B., Sarsour, J., & Planck, H. (2008). Chitosan–A sizing agent in fabric production–Development and ecological evaluation. CLEAN–Soil, Air, Water36(3), 279–286.
114.
go back to reference Steinbüchel, A. (2003). Production of rubber-like polymers by microorganisms. Current Opinion in Microbiology, 6(3), 261–270. Steinbüchel, A. (2003). Production of rubber-like polymers by microorganisms. Current Opinion in Microbiology, 6(3), 261–270.
115.
go back to reference Subramanian, P. M. (2000). Plastics recycling and waste management in the US. Resources, Conservation and Recycling, 28(3–4), 253–263.CrossRef Subramanian, P. M. (2000). Plastics recycling and waste management in the US. Resources, Conservation and Recycling28(3–4), 253–263.CrossRef
116.
go back to reference Sukara, E., & Meliawati, R. (2016). Potential values of bacterial cellulose for industrial applications. Jurnal Selulosa, 4(1), 7–16.CrossRef Sukara, E., & Meliawati, R. (2016). Potential values of bacterial cellulose for industrial applications. Jurnal Selulosa4(1), 7–16.CrossRef
117.
go back to reference Sun, Y., Luo, J., Ni, A. Q., Bi, Y. Y., & Yu, W. (2013). Study on biodegradability of wool and PLA fibers in natural soil and aqueous medium. In Advanced Materials Research (Vol. 641, pp. 82–86), Trans Tech Publications Ltd. Sun, Y., Luo, J., Ni, A. Q., Bi, Y. Y., & Yu, W. (2013). Study on biodegradability of wool and PLA fibers in natural soil and aqueous medium. In Advanced Materials Research (Vol. 641, pp. 82–86), Trans Tech Publications Ltd.
118.
go back to reference Tabone, M. D., Cregg, J. J., Beckman, E. J., & Landis, A. E. (2010). Sustainability metrics: Life cycle assessment and green design in polymers. Environmental Science & Technology, 44(21), 8264–8269. Tabone, M. D., Cregg, J. J., Beckman, E. J., & Landis, A. E. (2010). Sustainability metrics: Life cycle assessment and green design in polymers. Environmental Science & Technology, 44(21), 8264–8269.
119.
120.
go back to reference Thangavelu, K., & Subramani, K. B. (2016). Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry, 1, 109–140. Thangavelu, K., & Subramani, K. B. (2016). Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry, 1, 109–140.
121.
go back to reference Thiagamani, S. M. K., Krishnasamy, S., & Siengchin, S. (2019). Challenges of biodegradable polymers: An environmental perspective. Applied Science and Engineering Progress, 12(3), 149–149 Thiagamani, S. M. K., Krishnasamy, S., & Siengchin, S. (2019). Challenges of biodegradable polymers: An environmental perspective. Applied Science and Engineering Progress12(3), 149–149
122.
go back to reference Thomas, S., Gopi, S., & Amalraj, A. (Eds.) (2020). Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources, to Functional Products, Elsevier. Thomas, S., Gopi, S., & Amalraj, A. (Eds.) (2020). Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources, to Functional Products, Elsevier.
123.
go back to reference Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: where is all the plastic?. Science, 304(5672), 838–838PubMedCrossRef Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: where is all the plastic?. Science304(5672), 838–838PubMedCrossRef
124.
go back to reference Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly (lactide). Applied Microbiology and Biotechnology, 72, 244–251.PubMedCrossRef Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly (lactide). Applied Microbiology and Biotechnology72, 244–251.PubMedCrossRef
125.
go back to reference Tridico, S. R. (2009). Natural animal textile fibres: Structure, characteristics and identification. In Identification of Textile Fibers (pp. 27–67), Woodhead Publishing. Tridico, S. R. (2009). Natural animal textile fibres: Structure, characteristics and identification. In Identification of Textile Fibers (pp. 27–67), Woodhead Publishing.
126.
go back to reference Ul-Islam, M., Ullah, M. W., Khan, S., & Park, J. K. (2020). Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean Journal of Chemical Engineering, 37, 925–937.CrossRef Ul-Islam, M., Ullah, M. W., Khan, S., & Park, J. K. (2020). Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean Journal of Chemical Engineering37, 925–937.CrossRef
127.
go back to reference Varadarajan, G., & Venkatachalam, P. (2016). Sustainable textile dyeing processes. Environmental Chemistry Letters, 14, 113–122.CrossRef Varadarajan, G., & Venkatachalam, P. (2016). Sustainable textile dyeing processes. Environmental Chemistry Letters14, 113–122.CrossRef
128.
go back to reference Vasile, C. (2000). Handbook of Polyolefins, 2nd ed.; CRC Press: Boca Raton, FL, USA, ISBN 0203908716 Vasile, C. (2000). Handbook of Polyolefins, 2nd ed.; CRC Press: Boca Raton, FL, USA, ISBN 0203908716
129.
go back to reference Vink, E. T., Glassner, D. A., Kolstad, J. J., Wooley, R. J., & O’Connor, R. P. (2007). The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Industrial Biotechnology, 3(1), 58–81.CrossRef Vink, E. T., Glassner, D. A., Kolstad, J. J., Wooley, R. J., & O’Connor, R. P. (2007). The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Industrial Biotechnology3(1), 58–81.CrossRef
130.
go back to reference Vink, E. T., Rabago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403–419.CrossRef Vink, E. T., Rabago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability80(3), 403–419.CrossRef
131.
go back to reference Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials2(2), 307–344.
132.
go back to reference Wang, C., Yu, J., Lu, Y., Hua, D., Wang, X., & Zou, X. (2021). Biodegradable microplastics (BMPs): a new cause for concern?. Environmental Science and Pollution Research, 28, 66511–66518.PubMedCrossRef Wang, C., Yu, J., Lu, Y., Hua, D., Wang, X., & Zou, X. (2021). Biodegradable microplastics (BMPs): a new cause for concern?. Environmental Science and Pollution Research28, 66511–66518.PubMedCrossRef
133.
go back to reference Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry. The Journal of the Textile Institute, 108(5), 674–682.CrossRef Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry. The Journal of the Textile Institute108(5), 674–682.CrossRef
134.
go back to reference Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.PubMedPubMedCentralCrossRef Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources Structure, properties and applications. Marine Drugs13(3), 1133–1174.PubMedPubMedCentralCrossRef
135.
go back to reference Zambrano, M. C., Pawlak, J. J., Daystar, J., Ankeny, M., & Venditti, R. A (2021). Impact of dyes and finishes on the aquatic biodegradability of cotton textile fibers and microfibers released on laundering clothes: Correlations between enzyme adsorption and activity and biodegradation rates. Marine Pollution Bulletin, 165, 112030.PubMedCrossRef Zambrano, M. C., Pawlak, J. J., Daystar, J., Ankeny, M., & Venditti, R. A (2021). Impact of dyes and finishes on the aquatic biodegradability of cotton textile fibers and microfibers released on laundering clothes: Correlations between enzyme adsorption and activity and biodegradation rates. Marine Pollution Bulletin165, 112030.PubMedCrossRef
136.
go back to reference Zhang, S., Bilal, M., Zdarta, J., Cui, J., Kumar, A., Franco, M., ... & Iqbal, H. M. (2021). Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Research International, 140, 109979. Zhang, S., Bilal, M., Zdarta, J., Cui, J., Kumar, A., Franco, M., ... & Iqbal, H. M. (2021). Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Research International140, 109979.
137.
go back to reference Zhou, B. C. E., Kan, C. W., Sun, C., Du, J., & Xu, C. (2019). A review of chitosan textile applications. AATCC Journal of Research, 6(1_suppl), 8–14. Zhou, B. C. E., Kan, C. W., Sun, C., Du, J., & Xu, C. (2019). A review of chitosan textile applications. AATCC Journal of Research6(1_suppl), 8–14.
138.
go back to reference Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282–301.PubMedCrossRef Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules96, 282–301.PubMedCrossRef
139.
go back to reference Zimmerman, J. B., Anastas, P. T., Erythropel, H. C., & Leitner, W. (2020). Designing for a green chemistry future. Science, 367(6476), 397–400.PubMedCrossRef Zimmerman, J. B., Anastas, P. T., Erythropel, H. C., & Leitner, W. (2020). Designing for a green chemistry future. Science367(6476), 397–400.PubMedCrossRef
Metadata
Title
Ecological Effects of Biopolymers and Their Advantages for Textile Industry
Authors
Shumaila Kiran
Fazal ur Rehman
Sadia Javed
Shazia Abrar
Naila Mukhtar
Abdul Moied
Noman Maqsood Khan
Alina Javaid
Zaryab Rashid
Mubashar Hussain
Rabia Nawaz
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_10

Premium Partners