Skip to main content
Top

2024 | OriginalPaper | Chapter

Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry

Author : Heena Gupta

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The excessive utilization of petroleum-based synthetic and non-biodegradable resources for a variety of applications in textile industry has caused severe environmental destruction. The need for sustainable materials has stimulated scientists to explore alternative materials. For instance, biopolymers have gained attention owing to their ecological and biodegradable nature. Over the past decades, textile industry has been using synthetic- and plastic-based materials owing to their attractive properties such as low cost, easily availability, and versatility. However, textile/fashion industry is responsible for the production of around 92 million tonnes of non-biodegradable and highly hazardous waste at every level of processing which ultimately end up in landfills. Processing of petroleum into polyester results in the production of synthetic fibers or microplastics that can take up to 200 years to decompose which ultimately pose health risks to consumers. Along with the health risks, these synthetic fibers are responsible for the groundwater pollution, noise pollution, soil pollution, wastewater and liquid waste run off, and airborne waste. The production of microplastics emits greenhouse gas, i.e. 300 times more dangerous than carbon dioxide. Furthermore, the economy of the country also hampers by the textile waste as consumer spending increases, so does waste output from both the manufacturing and home sectors. In this way, the environment and economy both get affected by the textile industry. Owing to changing demand and technologies, the share of environment-friendly eco-textiles within international textile and apparel trade has been increasing so as to minimize hazardous effects. The ongoing research focuses to meet the environmental legislation and consumer demands for advanced, sustainable options and biopolymers are one of them.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York. Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York.
2.
go back to reference Gadilohar, B.L. & Shankarling, G.S. (2017). Choline based ionic liquids and their applications in organic transformation. Journal of Molecular Liquids, 227, 234–261. Gadilohar, B.L. & Shankarling, G.S. (2017). Choline based ionic liquids and their applications in organic transformation. Journal of Molecular Liquids, 227, 234–261.
3.
go back to reference Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M. & Garg, S. (2017). Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. Journal of Molecular Liquids, 229, 221–229. Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M. & Garg, S. (2017). Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. Journal of Molecular Liquids, 229, 221–229.
4.
go back to reference Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57, 171–180. Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57, 171–180.
5.
go back to reference Sharma, R. (2005). Guar gum grafting and its application in textile, Asian Journal of Experimental Sciences, 19, 77–81. Sharma, R. (2005). Guar gum grafting and its application in textile, Asian Journal of Experimental Sciences, 19, 77–81.
6.
go back to reference Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, International Journal of Biological Macromolecule, 96, 282–301. Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, International Journal of Biological Macromolecule, 96, 282–301.
7.
go back to reference Li, J., He, J. & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles, International Journal of Biological Macromolecule, 94, 466–473. Li, J., He, J. & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles, International Journal of Biological Macromolecule, 94, 466–473.
8.
go back to reference Eom, S.-I. (2001). Using chitosan as an antistatic finish for polyester fabric, American Association of Textile Chemists and Colorists Review, 1, 57–60. Eom, S.-I. (2001). Using chitosan as an antistatic finish for polyester fabric, American Association of Textile Chemists and Colorists Review, 1, 57–60.
9.
go back to reference Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N.M. (2010). Grafting of chitosan as a biopolymer onto wool fabric using Anhydride Bridge and its antibacterial property, Colloids and Surfaces B: Biointerfaces, 76, 397–403. Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N.M. (2010). Grafting of chitosan as a biopolymer onto wool fabric using Anhydride Bridge and its antibacterial property, Colloids and Surfaces B: Biointerfaces, 76, 397–403.
10.
go back to reference Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry, Journal of Textile institute, 108, 674–682. Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry, Journal of Textile institute, 108, 674–682.
11.
go back to reference Grzebieniarz, W., Biswas, D., Roy, S. & Jamróz, E. (2023). Advances in biopolymer-based multi-layer film preparations and food packaging applications, Food Packaging and Shelf Life, 35, 101033. Grzebieniarz, W., Biswas, D., Roy, S. & Jamróz, E. (2023). Advances in biopolymer-based multi-layer film preparations and food packaging applications, Food Packaging and Shelf Life, 35, 101033.
12.
go back to reference Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J. (2003) Biodegradable plastics from renewable sources, Folia Microbiologica, 48, 27–44. Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J. (2003) Biodegradable plastics from renewable sources, Folia Microbiologica, 48, 27–44.
13.
go back to reference Landis, A.E., Miller, S.A. & Theis, T.L. (2007). Life cycle of the corn-soybean agroecosystem for biobased production, Environment Science and Technology, 41, 1457–1464. Landis, A.E., Miller, S.A. & Theis, T.L. (2007). Life cycle of the corn-soybean agroecosystem for biobased production, Environment Science and Technology, 41, 1457–1464.
14.
go back to reference Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A. & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products, Carbohydrate Polymer Technologies and Applications, 2, 100082. Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A. & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products, Carbohydrate Polymer Technologies and Applications, 2, 100082.
15.
go back to reference Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., & Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nature Chemistry, 11, 442–448. Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., & Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nature Chemistry, 11, 442–448.
16.
go back to reference Coates, G.W., & Getzler, Y.D.Y.L. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5, 501–516. Coates, G.W., & Getzler, Y.D.Y.L. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5, 501–516.
17.
go back to reference Qasim, U., Osman, A. I., Al-Muhtaseb, A. H., Farrell, C., Al-Abri, M., Ali, M., Vo D. V. N., Jamil, F. & Rooney., D. W. (2021). Renewable cellulosic nanocomposities for food packaging to avaoid fossil fuel plastic pollution: a review, Environmental Chemistry Letters, 19, 613–641. Qasim, U., Osman, A. I., Al-Muhtaseb, A. H., Farrell, C., Al-Abri, M., Ali, M., Vo D. V. N., Jamil, F. & Rooney., D. W. (2021). Renewable cellulosic nanocomposities for food packaging to avaoid fossil fuel plastic pollution: a review, Environmental Chemistry Letters, 19, 613–641.
18.
go back to reference Abel, B.A., Snyder, R.L., & Coates, G.W. (2021). Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789. Abel, B.A., Snyder, R.L., & Coates, G.W. (2021). Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789.
19.
go back to reference Crini, N. M., Lichtfouse, E., Torri, G. & Crini, G. (2019). Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology and environmental chemistry, Environment Chemistry Letters, 17, 1667–1692. Crini, N. M., Lichtfouse, E., Torri, G. & Crini, G. (2019). Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology and environmental chemistry, Environment Chemistry Letters, 17, 1667–1692.
20.
go back to reference Deweid, L., Avrutina, O., & Kolmar, H. (2019). Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 400, 257–274. Deweid, L., Avrutina, O., & Kolmar, H. (2019). Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 400, 257–274.
21.
go back to reference Law, R.C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromolecular Symposia, 208, 255–266. Law, R.C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromolecular Symposia, 208, 255–266.
22.
go back to reference Pillai, C., Paul, W. & Sharma, C.P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34, 641–678. Pillai, C., Paul, W. & Sharma, C.P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34, 641–678.
23.
go back to reference Kumar, M.R. (1999). Chitin and chitosan fibres: a review, Bulletin of Material Science, 22, 905–915. Kumar, M.R. (1999). Chitin and chitosan fibres: a review, Bulletin of Material Science, 22, 905–915.
24.
go back to reference Enescu, D. (2008). Use of chitosan in surface modification of textile materials, Romanian Biotechechnological Letters, 13, 4037–4048. Enescu, D. (2008). Use of chitosan in surface modification of textile materials, Romanian Biotechechnological Letters, 13, 4037–4048.
25.
go back to reference Tridico, S. (2009). Natural animal textile fibres: structure, characteristics and identification, Identification of Textile Fibers, 27–67. Tridico, S. (2009). Natural animal textile fibres: structure, characteristics and identification, Identification of Textile Fibers, 27–67.
26.
go back to reference Kundu, S.C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B.B., Bhardwaj, N., Botlagunta, M., Dash, B.C., Acharya, C., Ghosh, A.K. (2012). Nonmulberry silk biopolymers, Biopolymers, 97, 455–467. Kundu, S.C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B.B., Bhardwaj, N., Botlagunta, M., Dash, B.C., Acharya, C., Ghosh, A.K. (2012). Nonmulberry silk biopolymers, Biopolymers, 97, 455–467.
27.
go back to reference Dutta, S., Pal, S., Panwar, P., Sharma, R. K. & Bhutia, P. L. (2022). Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification, ACS Omega. 7, 25909–25920. Dutta, S., Pal, S., Panwar, P., Sharma, R. K. & Bhutia, P. L. (2022). Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification, ACS Omega. 7, 25909–25920.
28.
go back to reference Mitura S., Sionkowska, A. & Jaiswal A. (2020). Biopolymers for hydrogels in cosmetics: Review, Journal of Materials Science, 31: 50 Chemical Engineering Journal. Mitura S., Sionkowska, A. & Jaiswal A. (2020). Biopolymers for hydrogels in cosmetics: Review, Journal of Materials Science, 31: 50 Chemical Engineering Journal.
29.
go back to reference Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. & Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices, Chemical Engineering Journal, 397, 125499. Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. & Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices, Chemical Engineering Journal, 397, 125499.
30.
go back to reference Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W. & Deng Y. (2017). Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution, Nano Energy, 32, 336–346. Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W. & Deng Y. (2017). Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution, Nano Energy, 32, 336–346.
31.
go back to reference Nasr., R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition, Journal of Environmental Chemical Engineering, 10, 107250. Nasr., R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition, Journal of Environmental Chemical Engineering, 10, 107250.
32.
go back to reference Aadil, K. R., Awasthi, S., Kumar, R., Dutt, S. & Jha, H. (2023). Advanced functional nanomaterials of biopolymers: Structure, properties, and applications Functional Materials from Carbon, Inorganic, and Organic Sources Methods and Advances Woodhead Publishing Series in Electronic and Optical Materials, 521–557. Aadil, K. R., Awasthi, S., Kumar, R., Dutt, S. & Jha, H. (2023). Advanced functional nanomaterials of biopolymers: Structure, properties, and applications Functional Materials from Carbon, Inorganic, and Organic Sources Methods and Advances Woodhead Publishing Series in Electronic and Optical Materials, 521–557.
33.
go back to reference McNeil, S. J., Gupta, H. (2022). Emerging applications of aerogels in textiles, Polymer Testing, 106, 107426. McNeil, S. J., Gupta, H. (2022). Emerging applications of aerogels in textiles, Polymer Testing, 106, 107426.
34.
go back to reference Abdulwahid, R. T., Aziz, S. B. & Kadir, F.Z. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device, Materials Today Sustainability, 23, 100472. Abdulwahid, R. T., Aziz, S. B. & Kadir, F.Z. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device, Materials Today Sustainability, 23, 100472.
35.
go back to reference Ilman, B. & Balkis A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties, Journal of Building Engineering, 76, 107220. Ilman, B. & Balkis A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties, Journal of Building Engineering, 76, 107220.
36.
go back to reference Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy, Chem, 7, 2913–2926. Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy, Chem, 7, 2913–2926.
37.
go back to reference Hong, Y., Wu, S. & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions, Science of The Total Environment, 903, 166258. Hong, Y., Wu, S. & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions, Science of The Total Environment, 903, 166258.
38.
go back to reference Zhou, Y., Y. a, Ashokkumar, V., Amobonye, A., Bhattacharjee, G., Sirohi, R., Singh, V., Flora, G., Kumar, V., Pillai, S., Zhang, Z. & Awasthi, M. K. (2023). Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review, Environmental Pollution, 320, 121106. Zhou, Y., Y. a, Ashokkumar, V., Amobonye, A., Bhattacharjee, G., Sirohi, R., Singh, V., Flora, G., Kumar, V., Pillai, S., Zhang, Z. & Awasthi, M. K. (2023). Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review, Environmental Pollution, 320, 121106.
39.
go back to reference Ferdinánd, M., Várdai, R., Móczó, J. & Pukánszky, B. (2023). Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties, Composites Part A: Applied Science and Manufacturing, 164, 107318. Ferdinánd, M., Várdai, R., Móczó, J. & Pukánszky, B. (2023). Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties, Composites Part A: Applied Science and Manufacturing, 164, 107318.
40.
go back to reference Singh, R., Gautam, S., Sharma, B., Jain, P. & Chauhan, K. D. (2021). Chapter 2: Biopolymers and their classifications, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 21–44. Singh, R., Gautam, S., Sharma, B., Jain, P. & Chauhan, K. D. (2021). Chapter 2: Biopolymers and their classifications, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 21–44.
41.
go back to reference Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. (2020). Biopolymer-Based Composites for Medical Applications, Encyclopedia of Renewable and Sustainable Materials, 2, 20–28. Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. (2020). Biopolymer-Based Composites for Medical Applications, Encyclopedia of Renewable and Sustainable Materials, 2, 20–28.
42.
go back to reference Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. & Gopi, S. (2021). Chapter 15, Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 351–372. Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. & Gopi, S. (2021). Chapter 15, Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 351–372.
43.
go back to reference Ananthi, G. B. G., Sivakumar, N., & Deepak, M.S. (2021). Experimental study of biopolymer in corrosion resistance for industrial exposure condition, Materials Today Proceedings, 44, 651–658. Ananthi, G. B. G., Sivakumar, N., & Deepak, M.S. (2021). Experimental study of biopolymer in corrosion resistance for industrial exposure condition, Materials Today Proceedings, 44, 651–658.
44.
go back to reference Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. & Sanjayan, J. (2023). Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment, Journal of Building Engineering, 66, 105835. Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. & Sanjayan, J. (2023). Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment, Journal of Building Engineering, 66, 105835.
45.
go back to reference Lebreton, L. & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal humanities and social sciences communications, Palgrave Communications, 5, 1–11. Lebreton, L. & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal humanities and social sciences communications, Palgrave Communications, 5, 1–11.
46.
go back to reference Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations, Nature Communications, 14, 1–12. Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations, Nature Communications, 14, 1–12.
47.
go back to reference Neves, C. V., Gaylarde, C. C., Neto, J. A. B., Vieira, K. S., Pierri, B., Waite, C. C.C., Scott, D. C., Fonseca, E. M. (2022). The transfer and resulting negative effects of nano- and micro-plastics through the aquatic trophic web—A discreet threat to human health, Water Biology and Security, 1, 100080. Neves, C. V., Gaylarde, C. C., Neto, J. A. B., Vieira, K. S., Pierri, B., Waite, C. C.C., Scott, D. C., Fonseca, E. M. (2022). The transfer and resulting negative effects of nano- and micro-plastics through the aquatic trophic web—A discreet threat to human health, Water Biology and Security, 1, 100080.
48.
go back to reference Liu, X., Lei, T., Boré, A. Lou, Z., Abdouraman, B. & Ma., W. (2022). Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. Journal of Cleaner Production, 376, 134373. Liu, X., Lei, T., Boré, A. Lou, Z., Abdouraman, B. & Ma., W. (2022). Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. Journal of Cleaner Production, 376, 134373.
49.
go back to reference Shen, M., Huang, W., Chen, M., Song, B., Zeng, G. & Zhang, Y. (2020). (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, Journal of Cleaner Production, 254, 120138. Shen, M., Huang, W., Chen, M., Song, B., Zeng, G. & Zhang, Y. (2020). (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, Journal of Cleaner Production, 254, 120138.
50.
go back to reference Cristóbal, J., Albizzati , P. F., Giavini, M., Caro, D., Manfredi, S. & Tonini, D (2023). Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations, Waste Management, 170, 166–176. Cristóbal, J., Albizzati , P. F., Giavini, M., Caro, D., Manfredi, S. & Tonini, D (2023). Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations, Waste Management, 170, 166–176.
51.
go back to reference Hildebrandt, J., Thrän, D. & Bezama, A. (2021). The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes, Journal of Cleaner Production, 287, 125470. Hildebrandt, J., Thrän, D. & Bezama, A. (2021). The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes, Journal of Cleaner Production, 287, 125470.
52.
go back to reference Kim, T., Kim, D. & Park, Y. (2022). Recent progress in regenerated fibers for “green” textile products, Journal of Cleaner Production, 376, 134226. Kim, T., Kim, D. & Park, Y. (2022). Recent progress in regenerated fibers for “green” textile products, Journal of Cleaner Production, 376, 134226.
53.
go back to reference Oliveira, C. R. S., Júnior, A. H. S., Mulinari, J. & Immich, A. P. S. (2021). Textile Re-Engineering: Eco-responsible solutions for a more sustainable industry, Sustainable Production and Consumption, 28, 1232–1248. Oliveira, C. R. S., Júnior, A. H. S., Mulinari, J. & Immich, A. P. S. (2021). Textile Re-Engineering: Eco-responsible solutions for a more sustainable industry, Sustainable Production and Consumption, 28, 1232–1248.
54.
go back to reference Akram, M., Kumar, C., Parkash, Chachar, F. A. & A. Khans (2022). A Study on Waste Disposal Management in Textile Industry: A Case Study of Gul Ahmed, South Asian Management Review, 1, 14–36. Akram, M., Kumar, C., Parkash, Chachar, F. A. & A. Khans (2022). A Study on Waste Disposal Management in Textile Industry: A Case Study of Gul Ahmed, South Asian Management Review, 1, 14–36.
Metadata
Title
Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry
Author
Heena Gupta
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_9

Premium Partners