Skip to main content
Top

2018 | OriginalPaper | Chapter

16. Blood Interfacing Applications

Authors : Vasif Hasirci, Nesrin Hasirci

Published in: Fundamentals of Biomaterials

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Blood is a type of connective tissue and is the most difficult one to bring an implant in contact with because in addition to being biocompatible, a material has to be hemocompatible to serve as a successful implant. Hemocompatibility is defined as the property of a material not to elicit thrombosis and blood coagulation, loss or damage to platelets and other blood elements, or in short, a biomaterial’s property should not to initiate any adverse effects on blood constituents or functions. A broad series of tests are conducted in situ, in vitro, and in vivo before a material is tested on humans for its hemocompatibility. The main types of adverse effects are thrombosis (blood clotting), damage to blood cells (e.g., hemolysis of erythrocytes), adherence and decrease of blood elements such as platelets, and immune responses initiated through the various complement activation pathways.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ratcliffe A (2000) Tissue engineering of vascular grafts. Matrix Biol 19(4):353–357CrossRef Ratcliffe A (2000) Tissue engineering of vascular grafts. Matrix Biol 19(4):353–357CrossRef
2.
go back to reference Zhang J (2016) The application and development of artificial blood vessels. 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016) Zhang J (2016) The application and development of artificial blood vessels. 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016)
3.
go back to reference Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107CrossRef Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107CrossRef
4.
go back to reference Rathore A, Cleary M, Naito Y, Rocco K, Breuer C (2012) Development of tissue engineered vascular grafts and application of nanomedicine. Nanomed Nanobiotechnol 4(3):257–272CrossRef Rathore A, Cleary M, Naito Y, Rocco K, Breuer C (2012) Development of tissue engineered vascular grafts and application of nanomedicine. Nanomed Nanobiotechnol 4(3):257–272CrossRef
5.
go back to reference Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28:5009–5027CrossRef Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28:5009–5027CrossRef
6.
go back to reference Contreras MA, Quist WC, Logerfo FW (2000) Effect of porosity on small-diameter vascular graft healing. Microsurgery 20(1):15–21CrossRef Contreras MA, Quist WC, Logerfo FW (2000) Effect of porosity on small-diameter vascular graft healing. Microsurgery 20(1):15–21CrossRef
7.
go back to reference Isaka M et al (2006) Experimental study on stability of a high porosity expanded polytetrafluoroethylene graft in dogs. Ann Thorac Cardiovasc Surg 12:37–41 Isaka M et al (2006) Experimental study on stability of a high porosity expanded polytetrafluoroethylene graft in dogs. Ann Thorac Cardiovasc Surg 12:37–41
8.
go back to reference Greisler HP et al (1987) Biomaterial pretreatment with ECGF to augment endothelial cell proliferation. J Vasc Surg 5(2):393–399CrossRef Greisler HP et al (1987) Biomaterial pretreatment with ECGF to augment endothelial cell proliferation. J Vasc Surg 5(2):393–399CrossRef
9.
go back to reference Greisler HP, Cziperle DJ, Kim DU et al (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112(2):244–254 Greisler HP, Cziperle DJ, Kim DU et al (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112(2):244–254
10.
go back to reference Ahmed F et al (2014) Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules 15:1276–1287CrossRef Ahmed F et al (2014) Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules 15:1276–1287CrossRef
11.
go back to reference Sarkar S, Sales KM, Hamilton G, Seifalian AM (2007) Addressing thrombogenicity. J Biomed Mater Res B Appl Biomater 82(1):100–108CrossRef Sarkar S, Sales KM, Hamilton G, Seifalian AM (2007) Addressing thrombogenicity. J Biomed Mater Res B Appl Biomater 82(1):100–108CrossRef
12.
go back to reference de Valence S et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85:78–86CrossRef de Valence S et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85:78–86CrossRef
13.
go back to reference Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W (2015) Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 44:5680CrossRef Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W (2015) Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 44:5680CrossRef
14.
go back to reference Tanzi MC, Mantovani D, Petrini P, Guidoin R, Laroche G (1997) Chemical stability of polyether urethanes versus polycarbonate urethanes. J Biomedical Mater Res 36:550–559CrossRef Tanzi MC, Mantovani D, Petrini P, Guidoin R, Laroche G (1997) Chemical stability of polyether urethanes versus polycarbonate urethanes. J Biomedical Mater Res 36:550–559CrossRef
15.
go back to reference He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S (2006) Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12(9):2457–2466CrossRef He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S (2006) Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12(9):2457–2466CrossRef
16.
go back to reference Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10(7–8):1160–1168CrossRef Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10(7–8):1160–1168CrossRef
17.
go back to reference Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27(5):735–744CrossRef Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27(5):735–744CrossRef
18.
go back to reference Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRef Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRef
19.
go back to reference This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license
20.
go back to reference Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46CrossRef Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46CrossRef
21.
go back to reference Gurvitch R, Cheung A, Ye J, Wood DA, Willson AB, Toggweiler S et al (2011) Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J Am Coll Cardiol 58(21):2196–2209CrossRef Gurvitch R, Cheung A, Ye J, Wood DA, Willson AB, Toggweiler S et al (2011) Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J Am Coll Cardiol 58(21):2196–2209CrossRef
22.
go back to reference Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147CrossRef Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147CrossRef
23.
go back to reference Hilbert SL, Ferrans VJ, Tomita Y, Eidbo EE, Jones M (1987) Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J Thorac Cardiovasc Surg 94(3):419–429 Hilbert SL, Ferrans VJ, Tomita Y, Eidbo EE, Jones M (1987) Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J Thorac Cardiovasc Surg 94(3):419–429
24.
go back to reference Kiraly R, Yozu R, Hillegass D, Harasaki H, Murabayashi S, Snow J et al (1982) Hexsyn trileaflet valve: application to temporary blood pumps. Artif Organs 6(2):190–197CrossRef Kiraly R, Yozu R, Hillegass D, Harasaki H, Murabayashi S, Snow J et al (1982) Hexsyn trileaflet valve: application to temporary blood pumps. Artif Organs 6(2):190–197CrossRef
25.
go back to reference Nistal F, Garcia-Martinez V, Arbe E, Fernandez D, Artinano E, Mazorra F et al (1990) In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J Thorac Cardiovasc Surg 99(6):1074–1081 Nistal F, Garcia-Martinez V, Arbe E, Fernandez D, Artinano E, Mazorra F et al (1990) In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J Thorac Cardiovasc Surg 99(6):1074–1081
26.
go back to reference Dabagh M, Abdekhodaie MJ, Khorasani MT (2005) Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve. J Appl Polym Sci 98:758–766CrossRef Dabagh M, Abdekhodaie MJ, Khorasani MT (2005) Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve. J Appl Polym Sci 98:758–766CrossRef
27.
go back to reference INNOVIA LLC. Patent filed 2004, Registration Number 3446421 INNOVIA LLC. Patent filed 2004, Registration Number 3446421
28.
go back to reference Bezuidenhout D, Williams DF, Zilla P (2015) Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25CrossRef Bezuidenhout D, Williams DF, Zilla P (2015) Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25CrossRef
29.
go back to reference Gallocher SL, Aguirre AF, Kasyanov V, Pinchuk L, Schoephoerster RT (2006) Novel polymer for potential use in a trileaflet heart valve. J Biomed Mater Res B Appl Biomater 79(2):325–334CrossRef Gallocher SL, Aguirre AF, Kasyanov V, Pinchuk L, Schoephoerster RT (2006) Novel polymer for potential use in a trileaflet heart valve. J Biomed Mater Res B Appl Biomater 79(2):325–334CrossRef
30.
go back to reference Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H et al (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119(6):1653–1662CrossRef Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H et al (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119(6):1653–1662CrossRef
31.
go back to reference Punshon G, Sales KM, Vara DS, Hamilton G, Seifalian AM (2008) Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif 41(2):321–335CrossRef Punshon G, Sales KM, Vara DS, Hamilton G, Seifalian AM (2008) Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif 41(2):321–335CrossRef
32.
go back to reference van Neer PLMJ, Bouakaz A, Vlaanderen E, de Hart J, Van de Vosse FN, van der Steen AFW, de Jong N (2006) Detecting broken struts of a Björk-Shiley heart valve using ultrasound: a feasibility study. Ultrasound Med Biol 32(4):503–512CrossRef van Neer PLMJ, Bouakaz A, Vlaanderen E, de Hart J, Van de Vosse FN, van der Steen AFW, de Jong N (2006) Detecting broken struts of a Björk-Shiley heart valve using ultrasound: a feasibility study. Ultrasound Med Biol 32(4):503–512CrossRef
33.
go back to reference Shiltman MI (2003) New concepts in polymer science Shiltman MI (2003) New concepts in polymer science
34.
go back to reference Cooley DA (2001) The total artificial heart as a bridge to cardiac transplantation. Tex Heart Inst J 28(3):200–202 Cooley DA (2001) The total artificial heart as a bridge to cardiac transplantation. Tex Heart Inst J 28(3):200–202
35.
go back to reference Gray NA, Selzman CH (2006) Current status of the total artificial heart. Am Heart J 152(1):4–10CrossRef Gray NA, Selzman CH (2006) Current status of the total artificial heart. Am Heart J 152(1):4–10CrossRef
37.
go back to reference Whittaker DR, Fillinger MF (2006) The engineering of endovascular stent technology: a review. Vasc Endovasc Surg 40(2):85–94CrossRef Whittaker DR, Fillinger MF (2006) The engineering of endovascular stent technology: a review. Vasc Endovasc Surg 40(2):85–94CrossRef
38.
go back to reference Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6):651–656CrossRef Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6):651–656CrossRef
39.
go back to reference Cloft HJ, Kallmes DF, Lin HB, Li ST, Marx WF, Hudson SB et al (2000) Bovine type I collagen as an endovascular stent-graft material: biocompatibility study in rabbits. Radiology 214(2):557–562CrossRef Cloft HJ, Kallmes DF, Lin HB, Li ST, Marx WF, Hudson SB et al (2000) Bovine type I collagen as an endovascular stent-graft material: biocompatibility study in rabbits. Radiology 214(2):557–562CrossRef
40.
go back to reference Park SJ, Shim WH, Ho DS, Raizner AE, Park SW, Hong MK et al (2003) A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 348(16):1537–1545CrossRef Park SJ, Shim WH, Ho DS, Raizner AE, Park SW, Hong MK et al (2003) A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 348(16):1537–1545CrossRef
41.
go back to reference Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T et al (2005) Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol 16(3):331–338CrossRef Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T et al (2005) Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol 16(3):331–338CrossRef
42.
go back to reference Claessen BE, Henriques JP, Dangas GD (2010) Clinical studies with sirolimus, zotarolimus, everolimus, and biolimus A9 drug-eluting stent systems. Curr Pharm Des 16(36):4012–4024CrossRef Claessen BE, Henriques JP, Dangas GD (2010) Clinical studies with sirolimus, zotarolimus, everolimus, and biolimus A9 drug-eluting stent systems. Curr Pharm Des 16(36):4012–4024CrossRef
43.
go back to reference Kim K-H et al (2012) Comparison of drug-eluting versus bare-metal stent implantation in ST-elevation myocardial infarction patients with renal insufficiency: results from the national registry in Korea. Int J Cardiol 154(1):71–77CrossRef Kim K-H et al (2012) Comparison of drug-eluting versus bare-metal stent implantation in ST-elevation myocardial infarction patients with renal insufficiency: results from the national registry in Korea. Int J Cardiol 154(1):71–77CrossRef
44.
go back to reference Bangalore S, Gupta N, Guoa Y, Feit F (2014) Trend in the use of drug eluting stents in the United States: insight from over 8.1 million coronary interventions. Int J Cardiol 175:108–119CrossRef Bangalore S, Gupta N, Guoa Y, Feit F (2014) Trend in the use of drug eluting stents in the United States: insight from over 8.1 million coronary interventions. Int J Cardiol 175:108–119CrossRef
45.
go back to reference Federspiel WJ, Henchir KA (2004) Lung, artificial: basic principles and current applications. In: Encyclopedia of biomaterials and biomedical engineering. University of Pittsburgh, Pittsburgh, PA, pp 910–921 Federspiel WJ, Henchir KA (2004) Lung, artificial: basic principles and current applications. In: Encyclopedia of biomaterials and biomedical engineering. University of Pittsburgh, Pittsburgh, PA, pp 910–921
46.
go back to reference AAMI, S. A. R. P (1996) Association for the Advancement of medical instrumentation. Volume 2.1 biomedical equipment, part 1, equipment therapy and surgery cardiovascular implants and artificial organs: blood gas exchangers. AAMI 7199:633–648 AAMI, S. A. R. P (1996) Association for the Advancement of medical instrumentation. Volume 2.1 biomedical equipment, part 1, equipment therapy and surgery cardiovascular implants and artificial organs: blood gas exchangers. AAMI 7199:633–648
47.
go back to reference Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA
49.
go back to reference Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106CrossRef Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106CrossRef
50.
go back to reference This is a file from the Wikimedia Commons. This file is licensed under the Creative Commons Attribution 3.0 Unported license This is a file from the Wikimedia Commons. This file is licensed under the Creative Commons Attribution 3.0 Unported license
51.
go back to reference Yang Z, Matsumoto S, Maeda R (2002) A prototype of ultrasonic micro-degassing device for portable dialysis system. Sensors Actuators 95:274–280CrossRef Yang Z, Matsumoto S, Maeda R (2002) A prototype of ultrasonic micro-degassing device for portable dialysis system. Sensors Actuators 95:274–280CrossRef
Metadata
Title
Blood Interfacing Applications
Authors
Vasif Hasirci
Nesrin Hasirci
Copyright Year
2018
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-8856-3_16

Premium Partners