Skip to main content
Top
Published in: Health and Technology 6/2022

21-10-2022 | Original Paper

Breast cancer image analysis using deep learning techniques – a survey

Authors: Soumya Sara Koshy, L. Jani Anbarasi, Malathy Jawahar, Vinayakumar Ravi

Published in: Health and Technology | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Breast cancer is a tumour affecting the breast tissues and is detected commonly in women. Computer-aided diagnosis aids in mass screening and early detection of breast cancer. Technological advancements in deep learning are driving the growth of automated breast cancer diagnosis. Various breast cancer image modalities like histopathology, mammograms, thermography, and ultrasound-based images are used for detecting breast cancer. This paper tends to explore a review of current studies related to breast cancer classification using deep learning techniques.

Methods

The review highlights the imaging modalities, publicly available datasets, augmentation techniques, preprocessing techniques, transfer learning approaches, and deep learning techniques used by various researchers in the process of breast cancer early detection. In addition, the study also presents a comprehensive review of the performance of the existing deep learning algorithms, challenges, and future research directions.

Results

The various methods proposed so far have been compared based on performance metrics including accuracy, sensitivity, specificity, AUC, and F-measure. Many research works have attained an accuracy of more than 90% in the classification and analysis of breast cancer detection using histopathological images.

Conclusion

This review has pointed out various limitations that have to be improved for accurately identifying breast cancer using image modalities. Incorrect labelling of data due to observer variations with regard to image segmentation datasets, computation time, and Memory overhead has to be analyzed in future for resulting an enhanced CAD system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boyle P, Levin B. World Cancer report 2008: IARC Press. International Agency for Research on Cancer IARC. 2018. Boyle P, Levin B. World Cancer report 2008: IARC Press. International Agency for Research on Cancer IARC. 2018.
2.
go back to reference Moraga-Serrano PE. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–68. https://doi.org/10.1001/jamaoncol.2018.2706.CrossRef Moraga-Serrano PE. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–68. https://​doi.​org/​10.​1001/​jamaoncol.​2018.​2706.CrossRef
4.
go back to reference Von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, Fischer HH. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617-28. Von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, Fischer HH. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617-28.
6.
go back to reference Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K. Various types and management of breast cancer: an overview. J Adv Pharm Technol. 2010;1(2):109. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K. Various types and management of breast cancer: an overview. J Adv Pharm Technol. 2010;1(2):109.
9.
go back to reference Kim DH, Kim ST, Ro YM. Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) 2016 (pp. 927-931). IEEE. https://doi.org/10.1109/ICASSP.2016.7471811. Kim DH, Kim ST, Ro YM. Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) 2016 (pp. 927-931). IEEE. https://​doi.​org/​10.​1109/​ICASSP.​2016.​7471811.
12.
go back to reference Khan S, Islam N, Jan Z, Din IU, Rodrigues JJ. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett. 2019;125:1-6. Khan S, Islam N, Jan Z, Din IU, Rodrigues JJ. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett. 2019;125:1-6.
13.
go back to reference Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In international conference image analysis and recognition 2018 Jun 27 (pp. 737-744). Springer, Cham. Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In international conference image analysis and recognition 2018 Jun 27 (pp. 737-744). Springer, Cham.
14.
go back to reference Mahmood T, Li J, Pei Y, Akhtar F, Imran A, Rehman KU. A brief survey on breast cancer diagnostic with deep learning schemes using multi-image modalities. IEEE Access. 2020;8:165779-165809. Mahmood T, Li J, Pei Y, Akhtar F, Imran A, Rehman KU. A brief survey on breast cancer diagnostic with deep learning schemes using multi-image modalities. IEEE Access. 2020;8:165779-165809.
15.
go back to reference Springer, 2019, pp. 813–823. [18] Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K. Transforming diabetes care through artificial intelligence: The future is here. Popul Health Manag. 2019;22(3):229–242. Springer, 2019, pp. 813–823. [18] Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K. Transforming diabetes care through artificial intelligence: The future is here. Popul Health Manag. 2019;22(3):229–242.
16.
go back to reference Veta M, Pluim JPW, Diest PJV, Viergever MA. Breast cancer histopathology image analysis: A Review IEEE Trans Biomed Eng. 2014;61:1400–1411. Veta M, Pluim JPW, Diest PJV, Viergever MA. Breast cancer histopathology image analysis: A Review IEEE Trans Biomed Eng. 2014;61:1400–1411.
17.
go back to reference Dimitriou N, Arandjelović O, Caie PD. Deep learning for whole slide image analysis: an overview. Front Med. 2019 Nov 22;6:264. Dimitriou N, Arandjelović O, Caie PD. Deep learning for whole slide image analysis: an overview. Front Med. 2019 Nov 22;6:264.
18.
go back to reference Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Transl Res. 2018;194:19-35. Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Transl Res. 2018;194:19-35.
19.
go back to reference Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
20.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42(9):60–88.CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42(9):60–88.CrossRef
21.
go back to reference Duraisamy S, Emperumal S. Computer-aided mammogram diagnosis system using deep learning convolutional fully complex-valued relaxation neural network classifier. IET Comput Vis. 2017;11(8):656–62.CrossRef Duraisamy S, Emperumal S. Computer-aided mammogram diagnosis system using deep learning convolutional fully complex-valued relaxation neural network classifier. IET Comput Vis. 2017;11(8):656–62.CrossRef
22.
go back to reference Bour A, Castillo-Olea C, Garcia-Zapirain B, Zahia S. Automatic colon polyp classification using convolutional neural network: a case study at Basque country. 2019 IEEE Int Symp Signal Process Inf Technol (ISSPIT). 2019;1-5. IEEE. Bour A, Castillo-Olea C, Garcia-Zapirain B, Zahia S. Automatic colon polyp classification using convolutional neural network: a case study at Basque country. 2019 IEEE Int Symp Signal Process Inf Technol (ISSPIT). 2019;1-5. IEEE.
23.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278-324. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278-324.
24.
go back to reference Zemmal N, Azizi N, Sellami M. CAD system for classification of mammographic abnormalities using transductive semi supervised learning algorithm and heterogeneous features. In 2015 12th International Symposium on Programming and Systems Int Conf Archit Support Program Lang Oper Syst (ISPS). 2015;1-9. IEEE. Zemmal N, Azizi N, Sellami M. CAD system for classification of mammographic abnormalities using transductive semi supervised learning algorithm and heterogeneous features. In 2015 12th International Symposium on Programming and Systems Int Conf Archit Support Program Lang Oper Syst (ISPS). 2015;1-9. IEEE.
25.
go back to reference Saraswathi D, Srinivasan E. A CAD system to analyse mammogram images using fully complex-valued relaxation neural network ensembled classifier. J Med Eng Technol. 2014;38(7):359–66.CrossRef Saraswathi D, Srinivasan E. A CAD system to analyse mammogram images using fully complex-valued relaxation neural network ensembled classifier. J Med Eng Technol. 2014;38(7):359–66.CrossRef
26.
go back to reference Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proceedings of the Proc. IEEE Comput Soc Conf Comput Vis. 2015:3431-3440. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proceedings of the Proc. IEEE Comput Soc Conf Comput Vis. 2015:3431-3440.
27.
go back to reference Lewin JM, D'Orsi CJ, Hendrick RE, Moss LJ, Isaacs PK, Karellas A, Cutter GR. Clinical comparison of full-field digital mammography and screen-film mammography for detection of breast cancer. Am J Roentgenol. 2002;179(3):671-677. Lewin JM, D'Orsi CJ, Hendrick RE, Moss LJ, Isaacs PK, Karellas A, Cutter GR. Clinical comparison of full-field digital mammography and screen-film mammography for detection of breast cancer. Am J Roentgenol. 2002;179(3):671-677.
28.
go back to reference Zhu C, Song F, Wang Y, Dong H, Guo Y, Liu J. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC BMC Med Inform Decis Mak. 2019;19(1):1-7. Zhu C, Song F, Wang Y, Dong H, Guo Y, Liu J. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC BMC Med Inform Decis Mak. 2019;19(1):1-7.
29.
go back to reference Elmore JG, Longton GM, Pepe MS, Carney PA, Nelson HD, Allison KH, Geller BM, Onega T, Tosteson ANA, Mercan E, Shapiro LG, Brunye TT, Morgan TR, Weaver DL. A randomized study comparing digital imaging to traditional glass slide microscopy for breast biopsy and cancer diagnosis. J Pathol Inform. 2017;8(1):1–12.CrossRef Elmore JG, Longton GM, Pepe MS, Carney PA, Nelson HD, Allison KH, Geller BM, Onega T, Tosteson ANA, Mercan E, Shapiro LG, Brunye TT, Morgan TR, Weaver DL. A randomized study comparing digital imaging to traditional glass slide microscopy for breast biopsy and cancer diagnosis. J Pathol Inform. 2017;8(1):1–12.CrossRef
31.
go back to reference Nahid AA, Ali FB, Kong Y. Histopathological breast-image classification with image enhancement by convolutional neural network. In 2017 20th Int Conf Comput Inf Technol (ICCIT). 2017 Dec 22 (pp. 1-6). IEEE. Nahid AA, Ali FB, Kong Y. Histopathological breast-image classification with image enhancement by convolutional neural network. In 2017 20th Int Conf Comput Inf Technol (ICCIT). 2017 Dec 22 (pp. 1-6). IEEE.
32.
go back to reference Shibusawa M, Nakayama R, Okanami Y, Kashikura Y, Imai N, Nakamura T, Kimura H, Yamashita M, Hanamura N, Ogawa T. The usefulness of a computer-aided diagnosis scheme for improving the performance of clinicians to diagnose non-mass lesions on breast ultrasonographic images. J Med Ultrason. 2016;43(3):387–94.CrossRef Shibusawa M, Nakayama R, Okanami Y, Kashikura Y, Imai N, Nakamura T, Kimura H, Yamashita M, Hanamura N, Ogawa T. The usefulness of a computer-aided diagnosis scheme for improving the performance of clinicians to diagnose non-mass lesions on breast ultrasonographic images. J Med Ultrason. 2016;43(3):387–94.CrossRef
33.
go back to reference Gour M, Jain S, Sunil Kumar T. Residual learning based CNN for breast cancer histopathological image classification. Int J Imaging Syst Technol. 2020;30(3):621-35. Gour M, Jain S, Sunil Kumar T. Residual learning based CNN for breast cancer histopathological image classification. Int J Imaging Syst Technol. 2020;30(3):621-35.
34.
go back to reference Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB. Computerized lesion detection on breast ultrasound. Med Phys. 2002;29(7):1438–46.CrossRef Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB. Computerized lesion detection on breast ultrasound. Med Phys. 2002;29(7):1438–46.CrossRef
35.
go back to reference Huang YL, Chen DR, Liu YK. Breast cancer diagnosis using image retrieval for different ultrasonic systems. Int Conf Image Process 2004;5:2598–2960. Huang YL, Chen DR, Liu YK. Breast cancer diagnosis using image retrieval for different ultrasonic systems. Int Conf Image Process 2004;5:2598–2960.
36.
go back to reference Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. The Lancet. 2011;378(9805):1804–11.CrossRef Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. The Lancet. 2011;378(9805):1804–11.CrossRef
37.
go back to reference Wang Z, et al. Breast cancer detection using extreme learning machine based on feature fusion with cnn deep features. IEEE Access. 2019;7:105146–58.CrossRef Wang Z, et al. Breast cancer detection using extreme learning machine based on feature fusion with cnn deep features. IEEE Access. 2019;7:105146–58.CrossRef
41.
go back to reference Sun W, Tseng TL, Zhang J, Qian W. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph. 2017;57:4-9. Sun W, Tseng TL, Zhang J, Qian W. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph. 2017;57:4-9.
43.
go back to reference Zhang YD, Satapathy SC, Guttery DS, Górriz JM, Wang SH. Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Inf Process Manag. 2021;58(2):102439. Zhang YD, Satapathy SC, Guttery DS, Górriz JM, Wang SH. Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Inf Process Manag. 2021;58(2):102439.
44.
go back to reference Suh YJ, Jung J, Cho BJ. Automated breast cancer detection in digital mammograms of various densities via deep learning. J Pers Med. 2020;10(4):211. Suh YJ, Jung J, Cho BJ. Automated breast cancer detection in digital mammograms of various densities via deep learning. J Pers Med. 2020;10(4):211.
45.
go back to reference Tsai KJ, et al. A high-performance deep neural network model for bi-rads classification of screening mammography. Sensors 22.3. 2022;1160. Tsai KJ, et al. A high-performance deep neural network model for bi-rads classification of screening mammography. Sensors 22.3. 2022;1160.
46.
go back to reference Alruwaili M, Gouda W. Automated Breast Cancer Detection Models Based on Transfer Learning. Sensors. 2022;22(3):876.CrossRef Alruwaili M, Gouda W. Automated Breast Cancer Detection Models Based on Transfer Learning. Sensors. 2022;22(3):876.CrossRef
47.
go back to reference Li X, Radulovic M, Kanjer K, Plataniotis KN. Discriminative pattern mining for breast cancer histopathology image classification via fully convolutional autoencoder. IEEE Access. 2019:7;36433–36445. Li X, Radulovic M, Kanjer K, Plataniotis KN. Discriminative pattern mining for breast cancer histopathology image classification via fully convolutional autoencoder. IEEE Access. 2019:7;36433–36445.
49.
go back to reference Gecer B, Aksoy S, Mercan E, Shapiro LG, Weaver DL, Elmore JG. Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recognit. 2018;84:345-56. Gecer B, Aksoy S, Mercan E, Shapiro LG, Weaver DL, Elmore JG. Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recognit. 2018;84:345-56.
52.
go back to reference Araújo T, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS One. 2017;12(6). Araújo T, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS One. 2017;12(6).
53.
54.
go back to reference Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. In 2016 Proc Int Jt Conf Neural Netw. (IJCNN) 2016 Jul 24 (pp. 2560-2567). IEEE. Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. In 2016 Proc Int Jt Conf Neural Netw. (IJCNN) 2016 Jul 24 (pp. 2560-2567). IEEE.
55.
go back to reference Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Syst Appl. 2016;46:139–44.CrossRef Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Syst Appl. 2016;46:139–44.CrossRef
56.
go back to reference Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In International conference on medical image computing and computer-assisted intervention 2013: 411-418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40763-5_51. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In International conference on medical image computing and computer-assisted intervention 2013: 411-418. Springer, Berlin, Heidelberg. https://​doi.​org/​10.​1007/​978-3-642-40763-5_​51.
57.
go back to reference Celik Y, Talo M, Yildirim O, Karabatak M, Acharya UR. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recogn Lett. 2020;133:232–9.CrossRef Celik Y, Talo M, Yildirim O, Karabatak M, Acharya UR. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recogn Lett. 2020;133:232–9.CrossRef
58.
go back to reference Zerouaoui H, Idri A. Deep hybrid architectures for binary classification of medical breast cancer images. Biomed Signal Process Control. 2022;71: 103226.CrossRef Zerouaoui H, Idri A. Deep hybrid architectures for binary classification of medical breast cancer images. Biomed Signal Process Control. 2022;71: 103226.CrossRef
59.
go back to reference Phan NN, et al. Predicting breast cancer gene expression signature by applying deep convolutional neural networks from unannotated pathological images. Front Oncol. 2021;11:769447–769447. Phan NN, et al. Predicting breast cancer gene expression signature by applying deep convolutional neural networks from unannotated pathological images. Front Oncol. 2021;11:769447–769447.
60.
go back to reference Thapa A, et al. Deep learning for breast cancer classification: Enhanced tangent function. Comput Intell. 2021. Thapa A, et al. Deep learning for breast cancer classification: Enhanced tangent function. Comput Intell. 2021.
61.
go back to reference Ayana G, Park J, Jeong JW, Choe SW. A novel multistage transfer learning for ultrasound breast cancer image classification. Diagnostics. 2022;12(1):135. Ayana G, Park J, Jeong JW, Choe SW. A novel multistage transfer learning for ultrasound breast cancer image classification. Diagnostics. 2022;12(1):135.
62.
go back to reference Yurttakal AH, Erbay H, İkizceli T, Karaçavuş S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimed Tools Appl. 2020;79(21):15555-73. Yurttakal AH, Erbay H, İkizceli T, Karaçavuş S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimed Tools Appl. 2020;79(21):15555-73.
63.
go back to reference Zheng J, Lin D, Gao Z, Wang S, He M, Fan J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access. 2020;8:96946–54.CrossRef Zheng J, Lin D, Gao Z, Wang S, He M, Fan J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access. 2020;8:96946–54.CrossRef
64.
65.
go back to reference Abbas S, Jalil Z, Javed AR, Batool I, Khan MZ, Noorwali A, Gadekallu TR, Akbar A. BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm. PeerJ Comput Sci. 2021;7:e390. https://doi.org/10.7717/peerj-cs.390. Abbas S, Jalil Z, Javed AR, Batool I, Khan MZ, Noorwali A, Gadekallu TR, Akbar A. BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm. PeerJ Comput Sci. 2021;7:e390. https://​doi.​org/​10.​7717/​peerj-cs.​390.
68.
go back to reference Chapter 10 Analysis of Histopathology Images From Traditional Machine Learning to Deep Learning, Biomedical Texture Analysis, Oscar Jimenez-del-Toro,Sebastian Otálora ,Mats Andersson, Kristian Eurén, Martin Hedlund, Mikael Rousson, Henning Müller, Manfredo Atzori, Elsevier, 2017. Chapter 10 Analysis of Histopathology Images From Traditional Machine Learning to Deep Learning, Biomedical Texture Analysis, Oscar Jimenez-del-Toro,Sebastian Otálora ,Mats Andersson, Kristian Eurén, Martin Hedlund, Mikael Rousson, Henning Müller, Manfredo Atzori, Elsevier, 2017.
70.
go back to reference Xing F, Xie Y, Yang L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Biomed Eng. 2015;35(2):550-66. Xing F, Xie Y, Yang L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Biomed Eng. 2015;35(2):550-66.
71.
go back to reference Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In Int Conference on Med Image Comput Comput Assist Interv. 2013: 246-253. Springer, Berlin, Heidelberg. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In Int Conference on Med Image Comput Comput Assist Interv. 2013: 246-253. Springer, Berlin, Heidelberg.
72.
go back to reference Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, González Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In Int Conference on Med Image Comput Comput Assist Interv. 2013:403-410. Springer, Berlin, Heidelberg. Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, González Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In Int Conference on Med Image Comput Comput Assist Interv. 2013:403-410. Springer, Berlin, Heidelberg.
74.
go back to reference Spanhol F, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Transact Biomed Eng (TBME). 2016;63(7):1455–62.CrossRef Spanhol F, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Transact Biomed Eng (TBME). 2016;63(7):1455–62.CrossRef
77.
go back to reference Li X, Plataniotis KN. A complete color normalization approach to histo-pathology images using color cues computed from saturation weighted statistics. IEEE Trans Biomed Eng. 2015;62(7):1862–73.CrossRef Li X, Plataniotis KN. A complete color normalization approach to histo-pathology images using color cues computed from saturation weighted statistics. IEEE Trans Biomed Eng. 2015;62(7):1862–73.CrossRef
78.
go back to reference Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson ANA, Nelson HD, Pepe MS, Allison KH, Schnitt SJ, O’Malley FP, Weaver DL. Diagnostic concordance among pathologists interpreting breast biopsy specimens. J Am Med Assoc. 2015;313(11):1122–32.CrossRef Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson ANA, Nelson HD, Pepe MS, Allison KH, Schnitt SJ, O’Malley FP, Weaver DL. Diagnostic concordance among pathologists interpreting breast biopsy specimens. J Am Med Assoc. 2015;313(11):1122–32.CrossRef
79.
go back to reference Oster NV, Carney PA, Allison KH, Weaver DL, Reisch LM, Longton G, Onega T, Pepe M, Geller BM, Nelson HD, Ross TR. Development of a diagnostic test set to assess agreement in breast pathology: practical application of the Guidelines for Reporting Reliability and Agreement Studies (GRRAS). BMC Women's Health. 2013;13(1):1-8. Oster NV, Carney PA, Allison KH, Weaver DL, Reisch LM, Longton G, Onega T, Pepe M, Geller BM, Nelson HD, Ross TR. Development of a diagnostic test set to assess agreement in breast pathology: practical application of the Guidelines for Reporting Reliability and Agreement Studies (GRRAS). BMC Women's Health. 2013;13(1):1-8.
82.
go back to reference Frazer HM, Qin AK, Pan H, Brotchie P. Evaluation of deep learning‐based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset. J Med Imaging Radiation Oncol. 2021;65(5):529-37. Frazer HM, Qin AK, Pan H, Brotchie P. Evaluation of deep learning‐based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset. J Med Imaging Radiation Oncol. 2021;65(5):529-37.
83.
go back to reference Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. scikit-image: image processing in Python. PeerJ. 2014;2:e453. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. scikit-image: image processing in Python. PeerJ. 2014;2:e453.
84.
go back to reference Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, et al, “A method for normalizing histology slides for quantitative analysis” , In: Proceedings—2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009. Boston, Massachusetts. 2009;1107–1110 Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, et al, “A method for normalizing histology slides for quantitative analysis” , In: Proceedings—2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009. Boston, Massachusetts. 2009;1107–1110
85.
go back to reference Pizer SM. Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. Proc First Conf Visualization Biomed Comput. Atlanta, Georgia. 1990;337:1. Pizer SM. Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. Proc First Conf Visualization Biomed Comput. Atlanta, Georgia. 1990;337:1.
86.
go back to reference Pizer SM, Amburn EP, Austin JD, Robert C, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K. Adaptive Histogram Equalization and Its Variations. Comput Vis Graph Image Process. 1987;39:355–68.CrossRef Pizer SM, Amburn EP, Austin JD, Robert C, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K. Adaptive Histogram Equalization and Its Variations. Comput Vis Graph Image Process. 1987;39:355–68.CrossRef
88.
go back to reference Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput Graph Appl. 2001;21(5):34–41.CrossRef Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput Graph Appl. 2001;21(5):34–41.CrossRef
89.
go back to reference Arnout C. Ruifrok, Dennis A. Johnston and others, Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histology. 2001;23(4):291–9. Arnout C. Ruifrok, Dennis A. Johnston and others, Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histology. 2001;23(4):291–9.
90.
go back to reference Cheng HD, Shan J, Ju W, Guo Y, Zhang L. ‘Automated breast cancer detection and classification using ultrasound images: A survey.’ Pattern Recognit. 2010;43(1):299–317.CrossRefMATH Cheng HD, Shan J, Ju W, Guo Y, Zhang L. ‘Automated breast cancer detection and classification using ultrasound images: A survey.’ Pattern Recognit. 2010;43(1):299–317.CrossRefMATH
91.
go back to reference Ibrahim H, Kong NSP. ‘Brightness preserving dynamic histogram equalization for image contrast enhancement.’ IEEE Trans Consum Electron. 2007;53(4):1752–8.CrossRef Ibrahim H, Kong NSP. ‘Brightness preserving dynamic histogram equalization for image contrast enhancement.’ IEEE Trans Consum Electron. 2007;53(4):1752–8.CrossRef
94.
go back to reference Neela AG, Gayathri S, Jayashree K. A breast cancer detection using image processing and machine learning techniques. Int J Recent Technol Eng. 2019;8(3):5250-6. Neela AG, Gayathri S, Jayashree K. A breast cancer detection using image processing and machine learning techniques. Int J Recent Technol Eng. 2019;8(3):5250-6.
96.
go back to reference Mikołajczyk A, Grochowski M. Data augmentation for improving deep learning in image classification problem. 2018 Int Interdisciplinary PhD Workshop (IIPhDW). 2018;117-122. IEEE. Mikołajczyk A, Grochowski M. Data augmentation for improving deep learning in image classification problem. 2018 Int Interdisciplinary PhD Workshop (IIPhDW). 2018;117-122. IEEE.
97.
go back to reference Romero V, et al. Detecting breast cancer in histopathological images using deep learning. 2019. Romero V, et al. Detecting breast cancer in histopathological images using deep learning. 2019.
98.
go back to reference Trivizakis E, Ioannidis GS, et al. A novel deep learning architecture outperforming ‘off the shelf’ transfer learning and feature based methods in the automated assessment of mammographic breast density. 2019. Trivizakis E, Ioannidis GS, et al. A novel deep learning architecture outperforming ‘off the shelf’ transfer learning and feature based methods in the automated assessment of mammographic breast density. 2019.
100.
go back to reference Huynh B, Drukker K, Giger M. Mo-de-207b-06: Computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med Phys. 2016;43(6):3705–3705.CrossRef Huynh B, Drukker K, Giger M. Mo-de-207b-06: Computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med Phys. 2016;43(6):3705–3705.CrossRef
101.
go back to reference Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, Babu N, Vaidya V. Understanding the mechanisms of deep transfer learning for medical images. In Deep learning and data labeling for medical applications 2016:188-196. Springer, Cham. Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, Babu N, Vaidya V. Understanding the mechanisms of deep transfer learning for medical images. In Deep learning and data labeling for medical applications 2016:188-196. Springer, Cham.
103.
go back to reference Yang L, Hanneke S, Carbonell J. A theory of transfer learning with applica- tions to active learning. Mach Learn. 2013;90(2):161–89.MathSciNetCrossRefMATH Yang L, Hanneke S, Carbonell J. A theory of transfer learning with applica- tions to active learning. Mach Learn. 2013;90(2):161–89.MathSciNetCrossRefMATH
104.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE Conf Comput Vis Pattern Recognit. 2016 (pp. 770-778). He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE Conf Comput Vis Pattern Recognit. 2016 (pp. 770-778).
105.
go back to reference Boureau YL, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition. Proc 27th Int Conf Mach Learn. (ICML-10) 2010;111-118. Boureau YL, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition. Proc 27th Int Conf Mach Learn. (ICML-10) 2010;111-118.
107.
go back to reference Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review. Neurocomputing. 2016;187:27-48. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review. Neurocomputing. 2016;187:27-48.
108.
go back to reference Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conf Comput Vis Pattern Recognit. 2009;248-255. Ieee. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conf Comput Vis Pattern Recognit. 2009;248-255. Ieee.
109.
go back to reference Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural inf Proc Syst. 2017;30. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural inf Proc Syst. 2017;30.
110.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions. Proc IEEE Conf Comp Vision Pattern Recogn. 2015;1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions. Proc IEEE Conf Comp Vision Pattern Recogn. 2015;1–9.
111.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014;arXiv:1409.1556. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014;arXiv:1409.1556.
113.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.CrossRef
114.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Med Image Comput Assist Interv. 2015 (pp. 234-241). Springer, Cham. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Med Image Comput Assist Interv. 2015 (pp. 234-241). Springer, Cham.
115.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networksZ. in Adv Neural Inf Process Syst. 2012:1097–1105. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networksZ. in Adv Neural Inf Process Syst. 2012:1097–1105.
118.
go back to reference Zou L, Shaode Yu, Meng T, Zhang Z, Liang X, Xie Y. A Technical review of convolutional neural network-based mammographic breast cancer diagnosis. Comput Math Methods Med. 2019;2019:1–16.CrossRefMATH Zou L, Shaode Yu, Meng T, Zhang Z, Liang X, Xie Y. A Technical review of convolutional neural network-based mammographic breast cancer diagnosis. Comput Math Methods Med. 2019;2019:1–16.CrossRefMATH
120.
go back to reference Kittler J, Hatef M, Duin RPW, Matas J. On combining classifiers. IEEE Trans Pattern Anal Mach Intell. 1998;20(3):226–39.CrossRef Kittler J, Hatef M, Duin RPW, Matas J. On combining classifiers. IEEE Trans Pattern Anal Mach Intell. 1998;20(3):226–39.CrossRef
121.
go back to reference Albalawi U, Manimurugan S, Varatharajan R. Classification of breast cancer mammogram images using convolution neural network. Concurrency and Computation: Pract Exp. 2022;34(13):e5803. Albalawi U, Manimurugan S, Varatharajan R. Classification of breast cancer mammogram images using convolution neural network. Concurrency and Computation: Pract Exp. 2022;34(13):e5803.
122.
go back to reference Bareja R, Mojahed D, Hendon CP. Bareja R, Mojahed D, Hendon CP. Deep learning for classification of breast cancer in optical coherence tomography (OCT) imaging (Conference Presentation). Adv Biomed Clin Diag Surg Guidance Syst XVIII. 2020;112290F. https://doi.org/10.1117/12.2546256. Bareja R, Mojahed D, Hendon CP. Bareja R, Mojahed D, Hendon CP. Deep learning for classification of breast cancer in optical coherence tomography (OCT) imaging (Conference Presentation). Adv Biomed Clin Diag Surg Guidance Syst XVIII. 2020;112290F. https://​doi.​org/​10.​1117/​12.​2546256.
124.
go back to reference Remya R, Hema Rajini N. Computer aided diagnosis model for breast cancer diagnosis and classification using deep learning techniques. Int J Adv Res Sci Eng Technol. (IJARET) 2020;11(10):1294–1311. Remya R, Hema Rajini N. Computer aided diagnosis model for breast cancer diagnosis and classification using deep learning techniques. Int J Adv Res Sci Eng Technol. (IJARET) 2020;11(10):1294–1311.
125.
go back to reference Modigari N, Anbarasi L, Jasmine G, Jayachandran P, Prabhakaran R. Breast cancer detection using histology images: A survey. J Adv Res Dynam Control Syst. 2020;12:561–5.CrossRef Modigari N, Anbarasi L, Jasmine G, Jayachandran P, Prabhakaran R. Breast cancer detection using histology images: A survey. J Adv Res Dynam Control Syst. 2020;12:561–5.CrossRef
Metadata
Title
Breast cancer image analysis using deep learning techniques – a survey
Authors
Soumya Sara Koshy
L. Jani Anbarasi
Malathy Jawahar
Vinayakumar Ravi
Publication date
21-10-2022
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 6/2022
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-022-00703-5

Other articles of this Issue 6/2022

Health and Technology 6/2022 Go to the issue

Premium Partner