Skip to main content
Top
Published in: Journal of Electronic Materials 10/2023

22-07-2023 | Original Research Article

Broadband, Polarization-Insensitive and Ultra-Thin Metasurface-Based Radar-Absorbing Structure for Radar Cross-Section Reduction of Planar/Conformal Hotspots

Authors: Vineetha Joy, Shrikrishan Baghel, Syed Tabassum Nazeer, Hema Singh

Published in: Journal of Electronic Materials | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a broadband, polarization-independent and ultra-thin radar-absorbing structure (RAS) is proposed for the radar cross-section reduction (RCSR) of both planar and conformal scattering hotspots. The absorption characteristics and radar cross-section (RCS) performance of the novel metasurface-based RAS are analyzed in detail for both TE and TM polarization over a wide range of incident angles. The equivalent circuit model corresponding to the proposed unit cell is included as well. Further, the novel ultra-thin RAS (thickness of 0.043λ at the lowest operating frequency) was fabricated using a flexible substrate in both planar and conformal configurations, and the periodic pattern remained intact (without delamination) when applied over conformal geometries. The measurement results show that the percentage of power absorbed by the proposed structures (both planar and conformal) is greater than 80% in the frequency range of 8.2–12.2 GHz for both polarizations even at oblique angles of incidence. In addition, they provide more than 10 dB RCSR in comparison with their metallic counterparts of identical dimensions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Skolnik, Radar Handbook, 2nd ed., (New York: McGraw-Hill, 2008). M. Skolnik, Radar Handbook, 2nd ed., (New York: McGraw-Hill, 2008).
2.
go back to reference H. Singh, D.D.J. Ebison, H.S. Rawat, and R. George, Fundamentals of EM Design of Radar Absorbing Structures (RAS), 1st ed., (Singapore: Springer, 2017). H. Singh, D.D.J. Ebison, H.S. Rawat, and R. George, Fundamentals of EM Design of Radar Absorbing Structures (RAS), 1st ed., (Singapore: Springer, 2017).
3.
go back to reference J.-H. Oh, K.-S. Oh, C.-G. Kim, and C.-S. Hong, Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos. B Eng. 35, 49 (2004).CrossRef J.-H. Oh, K.-S. Oh, C.-G. Kim, and C.-S. Hong, Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos. B Eng. 35, 49 (2004).CrossRef
4.
go back to reference S.-H. Chen, W.-S. Kuo, and R.-B. Yang, Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. Int. J. Appl. Ceram. Technol. 16, 2065 (2019).CrossRef S.-H. Chen, W.-S. Kuo, and R.-B. Yang, Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. Int. J. Appl. Ceram. Technol. 16, 2065 (2019).CrossRef
5.
go back to reference N. Gill, J. Singh, S. Puthucheri, and D. Singh, Thin and broadband two-layer microwave absorber in 4–12 GHz with developed flaky Cobalt material. Electron. Mater. Lett. 14, 288 (2018).CrossRef N. Gill, J. Singh, S. Puthucheri, and D. Singh, Thin and broadband two-layer microwave absorber in 4–12 GHz with developed flaky Cobalt material. Electron. Mater. Lett. 14, 288 (2018).CrossRef
6.
go back to reference T. Deng, Z.-W. Li, and Z.N. Chen, Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials. IEEE Trans. Antennas Propag. 65, 5886 (2017).CrossRef T. Deng, Z.-W. Li, and Z.N. Chen, Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials. IEEE Trans. Antennas Propag. 65, 5886 (2017).CrossRef
7.
go back to reference F. Costa, A. Monorchio, and G. Manara, Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 58, 1551 (2010).CrossRef F. Costa, A. Monorchio, and G. Manara, Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 58, 1551 (2010).CrossRef
8.
go back to reference L. Sun, H. Cheng, Y. Zhou, and J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20, 4675 (2012).CrossRef L. Sun, H. Cheng, Y. Zhou, and J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20, 4675 (2012).CrossRef
9.
go back to reference Y.-Z. Cheng, Y. Nie, and R.-Z. Gong, Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films. Phys. Scr. 88, 045703 (2013).CrossRef Y.-Z. Cheng, Y. Nie, and R.-Z. Gong, Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films. Phys. Scr. 88, 045703 (2013).CrossRef
10.
go back to reference X. Lu, J. Chen, Y. Huang, Z. Wu, and A. Zhang, Design of ultra-wideband and transparent absorber based on resistive films. Appl. Comput. Electromagn. Soc. J. 34, 765 (2019). X. Lu, J. Chen, Y. Huang, Z. Wu, and A. Zhang, Design of ultra-wideband and transparent absorber based on resistive films. Appl. Comput. Electromagn. Soc. J. 34, 765 (2019).
11.
go back to reference Y. Shang, Z. Shen, and S. Xiao, On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag. 61, 6022 (2013).CrossRef Y. Shang, Z. Shen, and S. Xiao, On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag. 61, 6022 (2013).CrossRef
12.
go back to reference A.P. Sohrab and Z. Atlasbaf, A circuit analog absorber with optimum thickness and response in X-Band. IEEE Antennas Wirel. Propag. Lett. 12, 276 (2013).CrossRef A.P. Sohrab and Z. Atlasbaf, A circuit analog absorber with optimum thickness and response in X-Band. IEEE Antennas Wirel. Propag. Lett. 12, 276 (2013).CrossRef
13.
go back to reference A. Parameswaran, A.A. Ovhal, D. Kundu, H.S. Sonalikar, J. Singh, and D. Singh, A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes. IEEE Trans. Electromagn. Compat. 64, 1758 (2022).CrossRef A. Parameswaran, A.A. Ovhal, D. Kundu, H.S. Sonalikar, J. Singh, and D. Singh, A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes. IEEE Trans. Electromagn. Compat. 64, 1758 (2022).CrossRef
14.
go back to reference F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012).CrossRef F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012).CrossRef
15.
go back to reference A. Dileep, P.V. Abhilash, V. Joy, H. Singh, and R.U. Nair, Metamaterial Absorber Based on Minkowski Fractal Patch for Stealth Applications. in IEEE CONECCT (2020). A. Dileep, P.V. Abhilash, V. Joy, H. Singh, and R.U. Nair, Metamaterial Absorber Based on Minkowski Fractal Patch for Stealth Applications. in IEEE CONECCT (2020).
16.
go back to reference M. Yoo and S. Lim, Polarization-independent and ultra-wideband metamaterial absorber using a hexagonal artificial impedance surface and a resistance-capacitor layer. IEEE Trans. Antennas Propag. 62, 2652 (2014).CrossRef M. Yoo and S. Lim, Polarization-independent and ultra-wideband metamaterial absorber using a hexagonal artificial impedance surface and a resistance-capacitor layer. IEEE Trans. Antennas Propag. 62, 2652 (2014).CrossRef
17.
go back to reference S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K.V. Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115, 104503 (2014).CrossRef S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K.V. Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115, 104503 (2014).CrossRef
18.
go back to reference S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, Wide-angle broadband microwave metamaterial absorber with octave bandwidth. IET Microw. Antennas Propag. 9, 1160 (2015).CrossRef S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, Wide-angle broadband microwave metamaterial absorber with octave bandwidth. IET Microw. Antennas Propag. 9, 1160 (2015).CrossRef
19.
go back to reference Q. Lv, C. Jin, B. Zhang, P. Zhang, J. Wang, N. Kang, and B. Tian, Wideband dual-polarized microwave absorber at extremely oblique incidence. IEEE Trans. Antennas Propag. 71, 2497 (2023).CrossRef Q. Lv, C. Jin, B. Zhang, P. Zhang, J. Wang, N. Kang, and B. Tian, Wideband dual-polarized microwave absorber at extremely oblique incidence. IEEE Trans. Antennas Propag. 71, 2497 (2023).CrossRef
20.
go back to reference Z. Sun, L. Yan, X. Zhao, and R.X.-K. Gao, An ultrawideband frequency selective surface absorber with high polarization-independent angular stability. IEEE Antennas Wirel. Propag. Lett. 22, 789 (2023).CrossRef Z. Sun, L. Yan, X. Zhao, and R.X.-K. Gao, An ultrawideband frequency selective surface absorber with high polarization-independent angular stability. IEEE Antennas Wirel. Propag. Lett. 22, 789 (2023).CrossRef
21.
go back to reference K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P. Uhd Jepsen, Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express 20, 635 (2012).CrossRef K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P. Uhd Jepsen, Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express 20, 635 (2012).CrossRef
22.
go back to reference Y. Jang, M. Yoo, and S. Lim, Conformal metamaterial absorber for curved surface. Opt. Express 21, 24163 (2013).CrossRef Y. Jang, M. Yoo, and S. Lim, Conformal metamaterial absorber for curved surface. Opt. Express 21, 24163 (2013).CrossRef
23.
go back to reference Z. Huang, Y. Li, Q. Cao, Y. Zhao, Z. Cao, S. Guo, L. Miao, and J. Jiang, Partition layout loading of frequency selective surface absorbers on the curved surfaces for the significant RCS reduction. IEEE Trans. Microw. Theory Tech. 70, 2948 (2022).CrossRef Z. Huang, Y. Li, Q. Cao, Y. Zhao, Z. Cao, S. Guo, L. Miao, and J. Jiang, Partition layout loading of frequency selective surface absorbers on the curved surfaces for the significant RCS reduction. IEEE Trans. Microw. Theory Tech. 70, 2948 (2022).CrossRef
24.
go back to reference N. Hakla, S. Ghosh, K.V. Srivastava, and A. Shukla, in Proc. URSI International Symposium on Electromagnetic Theory (2016), p. 771. N. Hakla, S. Ghosh, K.V. Srivastava, and A. Shukla, in Proc. URSI International Symposium on Electromagnetic Theory (2016), p. 771.
25.
go back to reference W.-H. Choi, J.-H. Shin, T.-H. Song, J.-B. Kim, C.-M. Cho, W.-J. Lee, and C.-G. Kim, Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure. IEEE Trans. Electromagn. Compat. 56, 599 (2014).CrossRef W.-H. Choi, J.-H. Shin, T.-H. Song, J.-B. Kim, C.-M. Cho, W.-J. Lee, and C.-G. Kim, Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure. IEEE Trans. Electromagn. Compat. 56, 599 (2014).CrossRef
26.
go back to reference A. Dhumal, M.S. Bisht, A. Bhardwaj, M. Saikia, S. Malik, and K.V. Srivastava, Screen printed polarization independent microwave absorber for wideband RCS reduction. IEEE Trans. Electromagn. Compat. 65, 96 (2023).CrossRef A. Dhumal, M.S. Bisht, A. Bhardwaj, M. Saikia, S. Malik, and K.V. Srivastava, Screen printed polarization independent microwave absorber for wideband RCS reduction. IEEE Trans. Electromagn. Compat. 65, 96 (2023).CrossRef
27.
go back to reference C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, and T. Cui, Transparently curved metamaterial with broadband millimeter wave absorptions. Photonics Res. 7, 478 (2019).CrossRef C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, and T. Cui, Transparently curved metamaterial with broadband millimeter wave absorptions. Photonics Res. 7, 478 (2019).CrossRef
28.
go back to reference V. Joy, A. Dileep, P.V. Abhilash, R.U. Nair, and H. Singh, Metasurfaces for stealth applications: a comprehensive review. J. Electron. Mater. 50, 3129 (2021).CrossRef V. Joy, A. Dileep, P.V. Abhilash, R.U. Nair, and H. Singh, Metasurfaces for stealth applications: a comprehensive review. J. Electron. Mater. 50, 3129 (2021).CrossRef
29.
go back to reference S. Ghosh and K.V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas Wirel. Propag. Lett. 14, 511 (2015).CrossRef S. Ghosh and K.V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas Wirel. Propag. Lett. 14, 511 (2015).CrossRef
30.
go back to reference M.M. Tirkey and N. Gupta, Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber. IEEE Trans. Electromagn. Compat. 63, 1829 (2021).CrossRef M.M. Tirkey and N. Gupta, Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber. IEEE Trans. Electromagn. Compat. 63, 1829 (2021).CrossRef
31.
go back to reference S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K.V. Srivastava, An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas Wirel. Propag. Lett. 14, 1172 (2015).CrossRef S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K.V. Srivastava, An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas Wirel. Propag. Lett. 14, 1172 (2015).CrossRef
32.
go back to reference S. Ghosh, S. Bhattacharyya, and K.V. Srivastava, Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56, 350 (2014).CrossRef S. Ghosh, S. Bhattacharyya, and K.V. Srivastava, Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56, 350 (2014).CrossRef
33.
go back to reference M. Yoo, H.K. Kim, and S. Lim, Angular and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology. IEEE Antennas Wirel. Propag. Lett. 15, 414 (2016).CrossRef M. Yoo, H.K. Kim, and S. Lim, Angular and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology. IEEE Antennas Wirel. Propag. Lett. 15, 414 (2016).CrossRef
34.
go back to reference T.T. Nguyen and S. Lim, Bandwidth-enhanced and wide-angle-of incidence metamaterial absorber using a hybrid unit cell. Sci. Rep. 7, 1 (2017).CrossRef T.T. Nguyen and S. Lim, Bandwidth-enhanced and wide-angle-of incidence metamaterial absorber using a hybrid unit cell. Sci. Rep. 7, 1 (2017).CrossRef
Metadata
Title
Broadband, Polarization-Insensitive and Ultra-Thin Metasurface-Based Radar-Absorbing Structure for Radar Cross-Section Reduction of Planar/Conformal Hotspots
Authors
Vineetha Joy
Shrikrishan Baghel
Syed Tabassum Nazeer
Hema Singh
Publication date
22-07-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10574-9

Other articles of this Issue 10/2023

Journal of Electronic Materials 10/2023 Go to the issue